The Case for Banning (and Mandating) Ransomware Insurance

Kyle D. Logue* & Adam B. Shniderman**

Abstract

Ransomware attacks are becoming increasingly pervasive and disruptive, resulting in ransom demands becoming more exorbitant. Payments for ransom costs are increasingly being covered by insurance, which may offer coverage for a variety of cyber-related losses. Some commentators have expressed concern over this market phenomenon. Specifically, the concern is that the presence of insurance is making the ransomware problem worse based on the following theory: because there is ransomware insurance that covers ransom payments, and because paying the ransom is often far cheaper than paying the restoration and business interruption costs covered under the policy, there is an increased tendency to pay the ransom—and a willingness to pay higher amounts. This fact, known by the criminals, increases their incentive to engage in ransomware attacks, which increases the demand for insurance. And the cycle continues.

This Article demonstrates that the picture is not as simple as this story would suggest. Insurance offers a variety of pre-breach and post-breach services that are aimed at reducing the likelihood and severity of a ransomware attack. Thus, over the long-term, cyber insurance has the potential to lower ransomware-related costs, even without government intervention. As recent research has shown, however, insurers have not yet fully embraced their potential role as ex ante and ex post regulators of cyber risk—a role for which they are especially well-suited. This Article discusses reasons why that might be the case and offers suggestions for how government intervention may help. Among these suggestions is a limited ban on indemnity for ransomware payments with exceptions for cases involving threats to life and limb, which would be an expanded version of what is already in place with the Office of Foreign Assets Control’s (“OFAC”) sanctions program. We also explain how a government regulator, such as

* Douglas A. Kahn Collegiate Professor of Law, University of Michigan Law School.
** Law Clerk, U.S. Court of Appeals for the Ninth Circuit. The views expressed herein are the authors’ own and are not intended to reflect the views of their employers. The authors appreciate the helpful suggestions of Asaf Lubin, Daniel Schwarcz, Peter Siegelman, and Jeffrey Thomas, as well as the other participants in the New Ideas in Insurance program at the Insurance Law Center at the University of Connecticut School of Law.
the OFAC, could serve a coordinating function to help cyber insurers internalize the externalities associated with the insurers’ decisions to reimburse ransomware payments—a role that is played by reinsurers in the context of kidnap-and-ransom insurance. Finally, we consider the idea of a federal mandate requiring property and casualty insurers to provide coverage for the costs of ransomware attacks but exclude coverage for the ransomware payments.

TABLE OF CONTENTS

INTRODUCTION .. 248
I. A BRIEF RANSOMWARE OVERVIEW ... 259
II. THE CYBER INSURANCE MARKET ... 268
 A. THE DEVELOPMENT OF CYBER INSURANCE ... 268
 B. RANSOMWARE INSURANCE .. 271
 C. THE ROLE OF CYBER INSURERS IN RANSOMWARE NEGOTIATIONS 275
III. RANSOMWARE INSURANCE AND THE “EXTORTION ECONOMY”: COMPLICATING THE PICTURE ... 280
 A. THE PROFITABILITY COMPLAINT .. 281
 B. THE POTENTIAL OF RANSOMWARE INSURANCE .. 283
IV. A POSSIBLE WAY FORWARD: OF LIMITED BANS (AND MANDATES) 293
 A. RESPONDING TO THE SINGLE-YEAR-POLICY EXTERNALITY 294
 B. RESPONDING TO THE RANSOM EXTERNALITY ... 296
 1. Lessons from Kidnap-and-Ransom Insurance ... 296
 2. The Role of OFAC: Is Ransom Insurance Already Banned? 300
 3. Another Proposal: Banning the Bad Insurance, but Encouraging the Good Insurance .. 304
CONCLUSION ... 315

INTRODUCTION

Ransomware attacks are increasingly pervasive and disruptive. Not only are they shutting down (or at least “holding up”) businesses and local governments across the country, they are disrupting institutions in many sectors of the U.S. economy—from school systems, to medical facilities, to critical elements of the U.S. energy infrastructure, as well as the food supply
chain.¹ In one recent example that grabbed the world’s attention, a ransomware attack halted fuel distribution at Colonial Pipeline, which supplies roughly forty-five percent of the diesel, gasoline, and jet fuel used on the East Coast.² Ransomware attacks are also growing more frequent and the ransom demands more exorbitant.³ Indeed, the attacks are getting more pernicious with every passing month.⁴ What’s more, as Commerce Secretary Gina Raimondo has noted, ransomware attacks “are here to stay.”⁵

¹ Heather Kelly, Ransomware Attacks Are Closing Schools, Delaying Chemotherapy and Derailing Everyday Life, WASH. POST (June 5, 2021, 8:00 AM), https://www.washingtonpost.com/technology/2021/07/08/ransomware-human-impact/ (describing increasing prevalence and seriousness of ransomware attacks). Among the recent targets have been the Baltimore school system, a meat processing company, and the ferry system at Martha’s Vineyard. Id.

For those who have not been following this alarming development, ransomware is a type of malicious software ("malware") that suspends a computer system’s backup functions, encrypts the user’s files, and demands a ransom payment in exchange for the unlock key. Much like other computer viruses, ransomware can enter a user’s system through several paths, including user error (e.g., when an employee clicks a malicious link received in an email message) or vulnerabilities in the network itself. Once a computer or network is infected, the user is faced with choosing either to rebuild the system or pay the ransom. Due to the high cost of rebuilding computer networks, organizations that have fallen victim to ransomware attacks (including hospitals, schools, businesses, and municipalities) have become more inclined to simply pay the ransom.

In a trend that some find disturbing, ransom payments are increasingly being covered by insurance. Just as it is possible to buy insurance coverage against the risk of being kidnapped for ransom, it is

7 Id.
8 Id.
9 Newman, supra note 2 ("[I]n practice many organizations resort to paying. They either don’t have the backups and other infrastructure necessary to recover otherwise, can’t or don’t want to take the time to recover on their own, or decide that it’s cheaper to just quietly pay the ransom and move on."). Colonial Pipeline, for example, paid DarkSide, the Russian criminal cyber cartel responsible for most recent attack, a seventy-five bitcoin ransom worth approximately $5 million at the time. Id. The Department of Justice subsequently recovered sixty-four of those bitcoins, worth roughly $2.3 million. MacKenzie Sigalos, The FBI Likely Exploited Sloppy Password Storage to Seize Colonial Pipeline Bitcoin Ransom, CNBC (June 9, 2021, 7:09 AM), https://www.cnbc.com/2021/06/08/fbi-likely-exploited-sloppy-password-storage-to-seize-colonial-ransom.html. Ironically, the DOJ apparently was able to exploit the hackers’ sloppy use of passwords in securing their bitcoin wallet. Id.
10 See Renée Dudley, The Extortion Economy: How Insurance Companies Are Fueling a Rise in Ransomware Attacks, PROPUBLICA (Aug. 27, 2019, 5:00 AM), https://www.propublica.org/article/the-extortion-economy-how-insurance-companies-are-fueling-a-rise-in-ransomware-attacks. As of the time this Article, it remains unclear whether Colonial Pipeline relied on an insurer or simply paid the ransom out of its own coffers.
also possible to buy insurance against the risk of a ransomware attack. As a result of the growing number of cyber threats and the insurance market’s response to increasing demand for coverage, the market for specialized cyber insurance policies has expanded dramatically in recent years.\(^{12}\) Such policies offer coverage for a variety of cyber-related losses, including many of the costs arising out of ransomware attacks, such as the costs of hiring expert negotiators, the costs of recovering data from backups, the legal liabilities for exposing sensitive customer information, and the ransom payments themselves.\(^{13}\) Perhaps unsurprisingly, then, parties with ransomware insurance are increasingly relying on their insurance carrier to negotiate ransom demands and indemnify the payments.\(^{14}\)

Some commentators have expressed concern with this market phenomenon. Specifically, there is concern that the presence of insurance is making the ransomware problem worse.\(^{15}\) Arguably, the most extreme

\(^{12}\) See Dudley, supra note 10 (“In recent years, cyber insurance sold by domestic and foreign companies has grown into an estimated $7 billion to $8 billion-a-year market in the U.S. alone”). See also infra Part III (describing the structures of a cyber insurance policy and its ransomware coverage).

\(^{14}\) See Dudley, supra note 10.

version of this claim appeared in an August 2019 *ProPublica* story that linked the rise of ransomware attacks with the presence of cyber insurance.\(^\text{16}\) Noting several examples of insurance companies paying ransom demands to unlock their insured’s systems, the *ProPublica* author suggests that the insurance industry has contributed to a vicious cycle that fuels ransomware attacks while padding insurers’ bottom lines.\(^\text{17}\) And the author gave this collection of phenomena the evocative label, “the extortion economy.”\(^\text{18}\) The logic behind this label goes something like the following: once an insurer has sold a cyber insurance policy to an insured (e.g., a city or a corporation), that insurer has a strong incentive to pay any ransom that is demanded. Paying the ransom, though costly, may be much cheaper than paying the restoration costs that will be incurred if the ransomware program is not “unlocked” by the hacker.\(^\text{19}\) These restoration costs, under the terms of the typical cyber policy, will be borne by the insurer rather than the insured.\(^\text{20}\) Thus, a simple cost-benefit analysis will, on this view, inevitably lead the insurer to prefer paying the ransom. Hackers understand this logic, which gives them a strong incentive to identify and attack organizations that have cyber insurance coverage.\(^\text{21}\) This dynamic leads to more hacking and ransomware attacks overall, which increases demand for cyber insurance. As a result, insurers can sell more policies for higher premiums than before. And the cycle continues. The (mostly implied) conclusion of such analyses is that

\(^{17}\) Dudley, *supra* note 10.

\(^{18}\) Id.

\(^{19}\) Id. (discussing multiple circumstances where it was cheaper to pay ransom).

\(^{20}\) See infra Part III (describing the structures of a cyber insurance policy and its ransomware coverage).

we would be better off if the market for ransomware insurance were to disappear.22

This claim has gained traction in the popular media, government officials, members of the legal profession, and commentators in academia. The former head of the U.K.’s National Cyber Security Center, Ciaran Martin, for example, recently asserted that the ransomware problem is being fueled by the absence of legal barriers to organizations paying ransoms and filing insurance claims.23 Martin went on to suggest the possibility of an outright ban on insurance coverage for ransomware payments.24 The U.S. Department of the Treasury, through the OFAC, issued an advisory highlighting existing federal law that authorizes steep fines on U.S. persons, individuals and entities who make payments to parties under sanction by the U.S. government.25 The narrative that ransomware insurance makes businesses a target has been embraced by privacy and data security lawyers as well. As one attorney put it, a reason hackers target small to medium-sized companies and municipalities, which probably do not have large amounts of cash in the bank for paying ransom demands, is that such entities are likely to have insurance coverage.26

This idea—that the presence of insurance coverage actually encourages ransomware attacks—is an example of a more general phenomenon recently identified by two legal scholars as the problem of

\begin{footnotes}
\item[22] There is some possibility that this could happen. One large cyber insurer, AXA, which had been providing ransomware coverage, has—at the request of French government officials—decided to stop selling cyber insurance in France that reimburses extortion payments to ransomware criminals. Frank Bajak, Insurer AXA to Stop Paying Ransomeware Crime Payments in France, INS. J. (May 9, 2021), https://www.insurancejournal.com/news/international/2021/05/09/613255.htm.
\item[24] Id.
\item[26] Hudgins, supra note 16 (quoting Philip Yannella, privacy and data security group practice leader at Ballard Spahr).
\end{footnotes}
“third-party moral hazard.”

In a paper entitled *The Paradox of Insurance*, Gideon Parchomovsky and Peter Siegelman explore the potential for insurance to create significant negative externalities through incentives for third parties—that is, parties other than the insureds or the insurers—to “engage in antisocial, illegal and unethical activities in order to extract money from insureds or insurers.” The basic idea is straightforward and persuasive. If a third-party is interested in extorting or defrauding (or, in any way, illegally extracting) money from another individual or organization, the fact that the target individual or organization has insurance for such a payment can increase the third-party’s incentives to undertake such a scheme and can influence how much money they try to extract. The more money is available to pay an extortion demand, all else equal, the more profitable the extortion demand can be. Although Parchomovsky and Siegelman do not address ransomware insurance specifically, they do address kidnap-and-ransom (“K&R”) insurance, which has obvious similarities with ransomware coverage.

What should be done about the third-party moral hazard effects of ransomware insurance? One suggested solution is to ban such coverage, either as a general ban on making ransom payments or as a narrower ban on the insurance industry from selling coverage for such payments.

28 Id. at 2.

29 Id. at 4, 9–10.

30 Id. at 6 (“But perhaps the case that best illustrates the paradox of insurance is kidnap insurance.”). In a footnote to this statement, they then acknowledge that “kidnap insurance has evolved various techniques to mitigate third party moral hazard.” Id. at n.7 (citing Anja Shortland, *Governing Kidnap for Ransom: Lloyd’s as a ‘Private Regime’*, 30 Governance 283 (2017)). Parchomovsky and Siegelman also cite to other recent works on kidnapping and insurance. See, e.g., Alexander Fink & Mark Pingle, *Kidnap Insurance and Its Impact on Kidnapping Outcomes*, 160 PUB. CHOICE 481 (2014). We discuss the work of Parchomovsky and Siegleman as well as the work of Anja Shortland and their relevance to the ransomware insurance case below. See infra Part III & Part IV.B.1.

31 One threat analyst has claimed that “[p]rohibiting ransomware payments is the quickest and most effective way to end ransomware attacks.” Jason Breslow, *How to Stop Ransomware Attacks? A Proposal Would Prohibit Victims from Paying Up*, NPR (May 13, 2021, 12:03 PM), https://www.npr.org/2021/05/13/996299367/how-to-stop-ransomware-attacks-1-proposal-would-prohibit-victims-from-paying-
reasoning for such a ban is simple and compelling. If ransom payments, or the insurance for ransom payments, were to be prohibited by law (e.g., under penalty of heavy fines), the likelihood that a ransomware victim would actually make the ransom payment would decrease. And if ransomware targets are less likely to pay, or the amounts they are willing to pay are diminished (because of the lack of insurance funds as a potential source of financing), the hackers’ incentive to demand a ransom would also be diminished. This reasoning not only serves as the basis for recent calls to enact bans on ransomware payments and ransomware insurance, it has for many years also served as the basis for calls to ban ransom payments and ransom insurance in the kidnapping setting.\footnote{Assuming that the primary motivation for most ransomware attacks is financial, as seems to be the case (at least for now), this argument has some obvious merit. However, it fails to take into account the practical and moral limitations that would be raised by a comprehensive ban on ransomware payments and insurance coverage. Given the explosion in the}

\footnote{Most of the reporting on the rise of ransomware attacks indicates that profit is the primary motive. See, e.g., Alexander S. Gillis & Ben Lutkevich, Definition: Ransomware, TECHTARGET, https://www.techtarget.com/searchsecurity/definition/ransomware (last updated Dec. 2021). To the extent ransomware attacks are not about profit-maximization for the attackers, but rather are part of either a terrorist plot or cyber hybrid warfare effort on the part of a nation to another nation’s economy (as was the case for the massive NotPetya attack), it is not clear that the extortion economy story would apply in the same way, and it is therefore not clear that the same responses would be called for. For discussion on the NotPetya attack, see infra notes 50–53 and accompanying text.}

\footnote{So far as we are aware, the U.S. government has never enforced a ban on a particular type of insurance categorically. As we discuss below, however, there is a statutory ban on payments to individuals and organizations subject to U.S. sanctions,}
sheer number of ransomware attacks in recent years, enforcing a universal ban on all ransomware payouts by individual victims would be impractical. It would be a daunting administrative undertaking for the government to monitor thousands, perhaps tens of thousands, of organizations and individuals to ensure compliance with a comprehensive ransom ban, especially given the difficulty of tracking cryptocurrency transactions. In addition, if bans on ransomware insurance ended up curtailing all insurance coverage for ransomware attacks, we would lose all of the potential regulatory benefits that insurance can provide. Put another way, when insurance companies provide coverage for a particular risk, they have incentives in competing for business to help their insureds find methods to minimize their risks.

35 There have been thousands of ransomware attacks reported in recent years. The FBI’s Internet Crime Complaint Center (“IC3”) asserts there were 2,474 ransomware incidents reported in 2020 and a 225 percent increase in ransom demands. CYBERSECURITY & INFRASTRUCTURE SEC. AGENCY, AA21-243A, NATIONAL CYBER AWARENESS SYSTEM ALERT: RANSOMWARE AWARENESS FOR HOLIDAYS AND WEEKENDS 2 (2022), https://www.cisa.gov/uscert/sites/default/files/publications/AA21-243A-Ransomware_Awareness_for_Holidays_and_Weekends.pdf. Then IC3 received 2,084 complaints in the first half of 2021. Id. Several times that number goes unreported. Gerrit De Vynck, Many Ransomware Attacks Go Unreported. The FBI and Congress Want to Change That, WASH. POST (July 27, 2021, 7:32 PM), https://www.washingtonpost.com/technology/2021/07/27/fbi-congress-ransomware-laws/ (quoting Eric Goldstein, executive assistant director at CISA, as saying, “[w]e believe that only about a quarter of ransomware intrusions are actually reported.”).

36 See infra notes 99–110 and accompanying text.

37 For a discussion of the ways in which various types of insurance seek to reduce insured’s losses, see KENNETH S. ABRAHAM, DISTRIBUTING RISK: INSURANCE, LEGAL THEORY, AND PUBLIC POLICY 57 (1986); RICHARD V. ERICSON, AARON DOYLE & DEAN BARRY, INSURANCE AS GOVERNANCE (2003); Tom Baker & Thomas O. Farrish, LIABILITY INSURANCE & THE REGULATION OF FIREARMS, IN SUING THE GUN INDUSTRY: A BATTLE AT THE CROSSROADS OF GUN CONTROL AND MASS TORTS 292 (Timothy D. Lytton ed., 2005); and Omri Ben-Shahar & Kyle D. Logue, OUTSOURCING REGULATION: HOW INSURANCE REDUCES MORAL HAZARD, 111 MICH. L. REV. 197 (2012). We discuss insurance as a source of cyber risk regulation further below. See infra Part IV.B.
addition to the obvious risk-spreading benefit. What’s more, a ban on ransomware payments and ransomware insurance raises moral and practical concerns. Would the ban require imposing a serious punishment on, say, a hospital administrator who decides to pay a ransomware demand rather than risk the lives of its patients, or on the insurer who facilitates that payment?

On the other hand, even if one were to conclude that ransomware insurance should not be banned in all circumstances, such a conclusion would not imply that all government intervention in the ransomware insurance market is a bad idea. For starters, any insurance contract that covers ransomware attacks should be subject to the same sorts of regulatory safeguards and common-law doctrines that govern other aspects of the insurance relationship between insurers and their policyholders. Further, the potential regulatory or governance function of insurance has natural limitations. For example, ransomware insurers themselves externalize some of the costs of ransomware attacks, which means that their incentives as regulators will not be optimal, which provides additional potential roles for government intervention.

For these reasons, this Article considers a different approach, primarily as a thought experiment. First, to interrupt the extortion economy described above, we could institute a federal ban on insurance coverage for ransomware payments. This ban would apply to all insurance payouts for

38 The insurance industry is regulated at the state level. The seven main functional types of state insurance regulation include “(1) licensing (of insurance companies and intermediaries), (2) taxation, (3) solvency, (4) rates, (5) forms, (6) access and availability, and (7) market conduct.” TOM BAKER, KYLE D. LOGUE, & CHAIM SAIMAN, INSURANCE LAW AND POLICY: CASES AND MATERIALS 142 (5th ed. 2021). In addition, insurance contracts are subject to the same sorts of interpretive principles and common law doctrines that apply to other contracts and that serve to protect the reasonable expectations of the insureds and the insurers. Such doctrines include contra proferentem, waiver and estoppel, misrepresentation, and the duty of good faith and fair dealing. See id. at ch.2. See also infra Part II.C.

39 As Shortland points out, in the kidnap-and-ransom insurance market, the reinsurer Lloyd’s of London helps to internalize these externalities by serving a sort of industry coordinating function. SHORTLAND, supra note 11, at 176–77. See also Parchomovsky & Siegelman, supra note 27, at 34–35 (noting Shortland’s conclusion regarding the beneficial coordination role that Lloyd’s plays in the K&R market). We discuss below why reinsurers are less likely to play such a coordinating role in the ransomware insurance market and thus why government intervention may be necessary. See infra Part IV.B.1.
ransom payments except in situations involving substantial threat to human health or life. Second, with respect to coverage for the other losses associated with ransomware attacks (including the costs of restoring victims’ computer networks as well as business interruption coverage), not only would there be no ban, there would be a mandate that all commercial property and casualty insurers offer such coverage in a standalone policy that contains a reasonable amount of coverage—that is, with policy limits that provide substantial coverage in the event of an attack. Third, to encourage the purchase of such coverage, lawmakers could enact some sort of federal subsidy for the purchase of cyber insurance. The most obvious candidate would be an insurer-side subsidy in the form of a federal backstop or reinsurance program, similar to the sort of program that is already in place for terrorism insurance. But if such a program did not prove to be a sufficient subsidy and not enough organizations end up purchasing cyber insurance coverage, there are other, more extreme (less politically plausible, but perhaps more interesting), options such as a buyer-side subsidy or even a mandate. This would be similar to compulsory auto liability insurance or healthcare coverage under the Affordable Care Act.

This Article unfolds as follows. Part II provides a brief overview of the phenomenon of ransomware attacks—how they evolved from prior generations of cyberattacks, what forms the attacks tend to take now, and how the hackers secure their ransom. Part III considers the development of cyber insurance, with a special emphasis on coverage for ransomware attacks and how ransom negotiations are carried out in the shadow of the existing contractual obligation represented in the cyber insurance policy. Part III describes the structure of the ransomware insurance contract, and how the dynamics in the ransomware coverage market and the doctrines of insurance

law (such as the duty of good faith and fair dealing) can influence how the ransom negotiations play out. Part IV elaborates on the argument that ransomware insurance for ransom payments, on balance, is harmful to society. It also complicates the picture by explaining the substantial costs of instituting a comprehensive ban on all ransomware insurance and ransomware payouts, but emphasizes some of the benefits of ransomware insurance, including the risk-spreading and regulatory benefits of such coverage. Part V develops the idea of a limited ban on insurance for ransomware payments, with exceptions (perhaps granted selectively and discreetly by a regulatory body such as the OFAC) for cases involving threats to life and limb, coupled with federally subsidized and mandated coverage for the other costs of ransomware attacks. Part VI briefly concludes.

I. A BRIEF RANSOMWARE OVERVIEW

In 1989 the first ransomware attack locked computers at the World Health Organization’s International AIDS Conference.42 Employing stone-age level sophistication by present standards, the hacker attended the conference and handed out floppy disks to attendees.43 He told the conference attendees the disks contained a program to predict the risk of contracting AIDS.44 Once installed, the program had a very simple trigger: after ninety on-off boot-cycles, the ransomware would lock the user’s computer and tell the user to send $189 to a post office box in Panama to get the key.45 The hacker was quickly tracked down and arrested for his crimes, though he was ultimately declared mentally unfit for trial.46

The ransomware landscape has changed significantly in the last thirty years as they have become more common and more sophisticated. They have adopted stealthier techniques including threatening to publish sensitive data and using the potential for government fines from disclosure

43 Id.
45 Kelly, supra note 42.
46 Id.
of such data to extort payments. Ransomware attacks have also become more expensive. According to estimates, in 2019 ransom demands reached $6.3 billion and the total cost of ransom payments and downtime reached at least $42 billion. In 2017, ransomware began to make headlines. The WannaCry and NotPetya attacks disabled computers around the globe. WannaCry infected 300,000 computers in 150 countries on six continents. NotPetya has been called “the most devastating cyberattack in history.” It froze systems worldwide, including computers at shipping-titan Maersk, pharmaceutical behemoth Merck, and snack-food giant Mondelez.

53 Greenberg, supra note 52.
Just as spectacularly as ransomware entered the public consciousness with these two attacks, it fell out of favor with criminals for a period in 2018.54 Hackers had moved on to other modes of attacks. For example, cryptojacking—the theft of computer resources to mine cryptocurrencies like Bitcoin—increased during this period by 450%.55

Then, in 2019, ransomware attacks returned with a vengeance.56

The lack of mandatory reporting and a centralized information repository makes the scope of the problem difficult to determine.57 But reports suggest the number of attacks increased in 2019. McAfee Labs reported a 118% increase in ransomware attacks in the first quarter.58 Criminals captured the public’s attention with attacks on major cities, including Atlanta, New Orleans, and Baltimore.59 Their targets included hospitals in the U.S. and abroad, forcing them to turn away all but the most

56 See Barlyn, supra note 3 (suggesting spike in 2019); Nathaniel Popper, \textit{Ransomware Attacks Grow, Crippling Cities and Businesses}, N.Y. TIMES (Feb. 9, 2020), https://www.nytimes.com/2020/02/09/technology/ransomware-attacks.html (“In 2019, 205,280 organizations submitted files that had been hacked in a ransomware attack — a 41 percent increase from the year before”).

57 In contrast to the numbers reported in a prior paragraph, an FBI report claimed that losses totaled just over $8.9 million in 2019. FED. BUREAU OF INVESTIGATIONS INTERNET CRIME COMPLIANCE CTR., 2019 INTERNET CRIME REPORT 14 (2019), https://www.ic3.gov/Media/PDF/AnnualReport/2019_IC3Report.pdf. The stark difference stems from just 2,047 being reported to the bureau in 2019. \textit{Id.} The number also does not include “lost business, time, wages, files, or equipment, or any third party remediation services acquired by a victim.” \textit{Id.} at 20.

critical patients. In total, “113 state and municipal governments and agencies, 764 healthcare providers, and 89 universities, colleges, and school districts” fell victim to ransomware attacks. Despite the increase, criminals are employing an evolving strategy. Security experts indicate that the number of ransomware detections in businesses rose 365% between the second quarter of 2018 and second quarter of 2019, though consumer detections declined. There is also some evidence the attacks continued to rise during 2020, notwithstanding, or perhaps due to, the Covid-19 pandemic.

Historically, hackers adopted a “spray and pray” opportunistic approach. Criminals used automated systems to send numerous spam emails and fake advertisements hoping to infiltrate users’ systems. Once the recipient clicked on the link within these emails and advertisements, the malware downloaded and the user’s files were encrypted. The attacks typically were successful in infiltrating individuals’ and small businesses’ computers—entities with fewer resources to defend their systems. Small ransom demands meant criminals’ efforts were only financially worthwhile if a significant number of computers were successfully infected. But
criminals are now taking a more targeted approach, focusing on particular business sectors and entities.69 They are even attacking industrial control systems—the systems responsible for running power grids, manufacturing plants, oil refineries, and sewage treatment plants.70 They are gaining access to their targets’ systems long before releasing the malware.71 And they are conducting significant reconnaissance to better understand their target.72 This change in tactic has led to greater success in taking users’ files hostage.73 However, phishing attacks are still widely used.74 Indeed, several cities that were successfully held for ransom were infiltrated via phishing emails.75 Ultimately, successful attacks increased by forty-one percent in 2019 from the prior year.76 Changing tactics have also raised the stakes for entities that are breached, particularly those unwilling to pay ransoms.

In late 2019, reports came out that criminals were no longer just encrypting users’ files and demanding a ransom payment; they were now

\footnotesize{(noting victims are typically asked to pay “an amount that many organizations or individuals can afford to pay, given that the loss of the data is unbearable for the victim.”).69 See Sedletsky, supra note 64.70 Andy Greenberg, Mysterious New Ransomware Targets Industrial Control Systems, WIRED (Feb. 3, 2020, 4:56 PM), https://www.wired.com/story/ekans-ransomware-industrial-control-systems/.71 Sedletsky, supra note 64.72 Id.73 See Best Defense Against Spear Phishing Attacks: The Real Dangers of Spear-Phishing Attacks, FIREEye, https://www.fireeye.com/current-threats/best-defense-against-spear-phishing-attacks.html (last visited Apr. 27, 2022) (“People open 3% of their spam and 70% of spear-phishing attempts. And 50% of those who open the spear-phishing emails click on the links within the email—compared to 5% for mass mailings—and they click on those links within an hour of receipt. A campaign of 10 emails has a 90% chance of snaring its target.”).74 See FED. BUREAU OF INVESTIGATIONS INTERNET CRIME COMPLIANCE CTR., 2020 INTERNET CRIME REPORT 3 (2020), https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf.75 See, e.g., Fernandez, Sanger & Martinez, supra note 59 (discussing the Allentown hack via a phishing email); Rachael Thomas, 7 Florida Municipalities Have Fallen Prey to Cyber Attacks Since Last Year, NAPLES DAILY NEWS (Aug. 20, 2019, 5:14 PM), https://www.naplesnews.com/story/news/crime/2019/08/20/7-florida-municipalities-have-fallen-prey-cyber-attacks-ryuk-ransomware-phishing/2065063001/.76 Popper, supra note 56.)
also downloading and threatening to release sensitive data from the target’s system if the victim did not pay the ransom. These threats may significantly alter the calculus to determine whether to pay the ransom. No longer is the high cost of restoring systems the only consequence of not paying the ransom, particularly as criminals make good on their threats. For example, in February 2020, hackers released a trove of confidential data from a personal injury law firm in Texas. The data included, “pain diaries from personal injury cases, fee agreements, HIPPA consent forms, and more.”

This was not the first time this criminal organization had released data from a victim who refused to pay the ransom. In late 2019, the group released data from Southwire, a cable and wire manufacturer in Georgia, after it refused to pay a $6 million ransom. Despite the company’s best efforts, and court orders to stop releasing the information and take down the website, the group continued to publish the data online.

The changing nature of the attacks is also driving up the costs of ransomware. Ransom demands and payments have increased. Other costs

79 Id.
82 Indeed, the demands and payments have both reached eight figures. Criminals demanded $70 million to unlock computers affected by REvil group’s ransomware attack on Kaseya VSA, a software used by large companies and technology-service providers to manage and distribute updates. Rachel Lerman & Gerrit De Vynck, Hackers Demand $70 Million to Unlock Businesses Hit by Sprawling Ransomware Attack, WASH. POST (July 5, 2021, 4:39 PM), https://www.washingtonpost.com/technology/2021/07/05/kaseya-ransomware-70-million-fbi/. The attack affected
are also going up. As these attacks become more sophisticated, costs associated with recovery increase, as does lost revenue and reputational harm. The average length of downtime has increased, reaching as high as sixteen days in the fourth quarter of 2019.83 Sources attribute this increased downtime to the successful attacks against larger enterprises.84 As a result, the average cost of downtime in 2020 reached $283,000—an increase of almost 100\% from the prior year.85

The situation grew worse in 2020. The DOJ declared 2020 the “worst year ever” for extortion-related cybercrimes.86 According to antivirus firm Emsisoft, the average ransom request reached $200,000 in 2020.87 Despite the global pandemic that began early in 2020, ransomware attacks focused on hospitals.88 Attacks were more profitable for ransomware gangs

\begin{footnotesize}
84 Id.
87 Ransomware Demands Continue to Rise as Data Exfiltration Becomes Common, and Maze Subdues, COVEWARE (Nov. 4, 2020), https://www.coveware.com/blog/q3-2020-ransomware-marketplace-report.
\end{footnotesize}
too. They made at least $350 million—a 311% increase over 2019.89 Once again, the criminals laundered their cryptocurrency payments through Bitcoin mixing services.90 But research suggests that the bulk of that money travels through just a few exchange portals, potentially giving law enforcement an opportunity to disrupt the cash flow of ransomware gangs.91

It is difficult to determine how many attacks occur each year, and it is similarly difficult to say for certain what percentage of victims pay the ransom. But a recent survey of businesses found that twenty percent of ransomware victims paid the ransom in 2020—up from only fifteen percent in 2019 and four percent in 2018.92 Among these, several local governments opted to pay the demand rather than attempt to restore the systems themselves. The city of Riviera Beach, Florida paid the largest of these ransoms—sixty-five bitcoins worth approximately $600,000.93 Similarly, Lake City, Florida paid forty-two bitcoins worth nearly $500,000 to unlock its systems.94 Other local governments, however, have not. The city of New

90 \textit{Id.} at 4, 9.
91 \textit{Id.} at 9, 18.
92 \textsc{Threat Post 2021: The Evolution of Ransomware} 17 (2021), https://media.threatpost.com/wp-content/uploads/sites/103/2021/04/19080601/0354039421fd7c82eb4e1b4a7c90f98e.pdf (“A full 80 percent said they didn’t pay the ransom.”); \textsc{Dark Reading}, How Data Breaches Affect the Enterprise 12 (2019), https://dsimg.ubm-us.net/envelope/412603/623683/F_1210_P1_13040_DR19_Report_Strategic_Security_2_Data_Breaches.pdf (noting 15 percent paid the demanded ransom in 2019 compared to four percent in 2018).
93 \textsc{Benjamin Freed}, \textit{Florida City Pays Hackers $600,000 After Ransomware Attack}, \textsc{StateScoop} (June 20, 2019), https://statescoop.com/florida-city-pays-hackers-600000-after-ransomware-attack/. The city’s insurer negotiated with the hackers and ultimately paid the ransom, leaving the city responsible for only its $25,000 deductible. \textsc{D. Howard Kass}, \textit{Riviera Beach, Florida Ransomware Attack: City Pays $600,000}, \textsc{MSSP Alert} (June 20, 2019), https://www.msspalert.com/cybersecurity-breaches-and-attacks/ransomware/riviera-beach-florida-malware-attack/.
94 \textsc{Catalin Cimpanu}, \textit{Second Florida City Pays Giant Ransom to Ransomware Gang in a Week}, \textsc{ZDNet} (June 26, 2019), https://www.zdnet.com/article/second-florida-city-pays-giant-ransom-to-ransomware-gang-in-a-week/. The city was responsible for its $10,000 deductible. \textsc{Ian Duncan}, \textit{As Florida Cities Use Insurance to Pay $1 Million in Ransoms to Hackers, Baltimore and Maryland Weigh Getting
Bedford, Massachusetts, for example, chose to restore its systems from backups after hackers demanded more than $5 million in ransom and rejected a counteroffer of $400,000. In addition to the changing size of ransom demands, the form of ransom payment has come a long way since victims were asked to mail a check to a post-office box in 1989. Criminals typically demand payment be made in cryptocurrency—frequently in bitcoin. Indeed, ninety-nine percent of ransoms paid in cryptocurrency in 2019 were delivered using bitcoin.

Introduced in 2008, Bitcoin is a peer-to-peer cryptocurrency that allows rapid, reliable, and pseudo-anonymous payments. Cryptocurrency, unlike a traditional bank wire or check-deposit, can be difficult to trace. Indeed, in its early days, Bitcoin was thought to be completely anonymous and untraceable by law enforcement. That myth has slowly unraveled but uncovering the identity of a Bitcoin user remains a difficult task. In fact, some law enforcement officials rely on a criminal’s mistakes to track them. In 2013, the FBI was able to identify Ross Ulbricht, the individual behind Silk Road—the dark web’s one-stop-shop for illicit goods and services—because he was careless. Ulbricht used a pseudonym for Bitcoin.

96 See supra text accompanying notes 42–46.

100 Id.

101 Id.

102 Id.

103 Id.
transactions that he had adopted years earlier on an internet forum.104 The FBI was able to use this clue to determine his identity.105

Many criminals take extra precautions to make cryptocurrency transactions more difficult to trace, including using “mixing services.”106 These services mix multiple individuals’ Bitcoin transactions, functionally laundering the money in an effort to end the trail.107 “The forensic trail shows the money going in but then goes cold because it is impossible to know which Bitcoins belong to whom on the other end.”108 But even mixing services have exploitable weaknesses when dealing with large sums of money.109 Despite these issues, transacting in Bitcoin remains a reasonably effective method of masking criminals’ identity. New cryptocurrencies hope to address the vulnerabilities in Bitcoin.110

In sum, ransomware has become both an enormous source of profit for criminals and an enormous cost for target organizations. It is unsurprising, then, that those organizations would seek to use insurance as a way of helping them manage the risk of ransomware attacks.

II. THE CYBER INSURANCE MARKET

A. THE DEVELOPMENT OF CYBER INSURANCE

It should be no surprise, then, that the significant increase in cyber threats, including the increased threat of ransomware attacks, has fueled a growing market for insurance against cyber-related losses.111 In the early

104 Id.
105 Id.
106 Id.
107 Id.
108 Id.
109 Id.
110 Id. (discussing Shadow, a new anonymous online market which uses its own cryptocurrency called ShadowCash).

years of cyber-attacks, victims sought coverage for the fall out from cyber-attacks from their commercial property or general liability insurance policies, since those policies (at least the older ones) did not have clear cyber-risk exclusions. Indeed, that is still true for some property and liability policies. Insurers, however, have resisted the effort to find coverage for cyber-related claims under those types of policies, and the results in the courts are mixed. For example, in America Online, Inc. v. St. Paul Mercury Insurance Co., the Fourth Circuit held that computer data, software, and systems were not tangible property under commercial general liability (“CGL”) provisions providing property damage coverage. By contrast, in Computer Corner, Inc. v. Fireman’s Fund Insurance Co., a New Mexico district court held that data stored on a hard drive did constitute covered tangible property. In 2001, the Insurance Services Office (“ISO”)
approved a change to the CGL coverage form designed apparently to make it more explicit that cyber risks are excluded.116

In the ensuing coverage battles, courts have found no coverage for cyber losses under the post-2001 CGL coverage form. In Innovak International, Inc. v. Hanover Insurance, for example, a Florida district court held that a CGL policy provided no coverage when the publication of confidential data was the result of a third-party hacker, rather than the insured.117 Similarly, in St. Paul Fire & Marine Insurance v. Rosen, a federal district judge ruled the insurer did not have a duty to defend under a CGL policy where a data breach was perpetrated by a third party.118 As a result of similar decisions and the increase in cyber-attacks, the market for standalone cyber risk insurance policies has taken off.119

Unlike many insurance policies, which use standardized language, the language within cyber policies often varies between insurance companies and policies.120 Still, cyber policies do tend to have some characteristics in common. For starters, they all generally provide a variety of first and third-party coverages.121 Third-party coverage provides insurance for legal liabilities, such as “claims arising out of, or alleging financial loss as a result of a failure of the insured’s network security or a failure to protect confidential information.”122 Such insurance fills the coverage gaps left by the post-2001 CGL coverage form, but the frequency or magnitude of such

120 Id. at 1.
121 Shauhin A. Talesh, Insurance Companies as Corporate Regulators: The Good, the Bad, and the Ugly, 66 DEPAUL L. REV. 463, 475 (2017) (describing the basics components of a typical cyber insurance policy). First-party coverage pays for an insured’s own expenses, including costs related to investigating, reporting, and correcting technological vulnerabilities. GRANATO & POLACEK, supra note 119, at 2. Third-party coverage provides protection against legal claims brought by individuals who might be harmed by the attack and who seek to hold the insured-target responsible. Id. at 1.
122 AIG CYBER COVER GUIDE, supra note 13.
lawsuits is unclear. First-party cyber coverage can cover a broad range of expenses. For example, cyber policies may provide coverage for the costs of “notifications, public relations, and other services to assist in managing and mitigating a cyber incident,” conducting a forensic investigation to determine the cause of the event, restoring electronic data from backups, business interruption, and ransom payments. At least one insurer provides “towers of coverage”—dividing costs into multiple categories to ensure one kind of expense does not erode coverage for other kinds of expenses.

B. RANSOMWARE INSURANCE

Turning from cyber risk generally to ransomware risk, most modern cyber insurance policies provide some sort of coverage for ransomware attacks. Some companies provide ransomware coverage in their standard cyber insurance policy. For example, AIG offers cyber extortion insurance as part of its CyberEdge insurance policy, which provides coverage for a wide variety of cyber risks. That policy defines loss with respect to ransomware attacks to include “monies paid by an Insured with the Insurer’s prior written consent to terminate or end a Security Threat or Privacy Threat that would otherwise result in harm to an insured.” Other insurers offer cyber extortion endorsements to their general cyber insurance, kidnap-and-ransom, or other insurance policies. Markel, a Virginia-based specialty and small business insurance company, even offers such an endorsement to their

123 Id.
124 Id.
125 Id.
127 In Sections B and C, we rely in part on confidential telephone interviews with several attorneys who work as or directly with cyber “breach coaches” in response to ransomware attacks [hereinafter Confidential Interviews with Attorneys].
128 AIG CYBER COVER GUIDE, supra note 13.
“lawyers professional liability insurance policy.” That endorsement provides that “[t]he Company shall reimburse the Named Insured up to the amount stated in the Breach Mitigation Expense, Ransomware Attack and Wire Fraud Limits of Liability Schedule as applicable to Ransomware Attack for Loss . . .” The policy defines a “loss” to include “[t]he Named Insured’s payment of an extortion demand.” Some insurers appear to offer overlapping coverage, providing for extortion payments in their cyber policies and their kidnap and ransom policies. Coverage under all of these policies is predominantly first-party.

As is the case with many types of property and casualty insurance, cyber insurers do more than simply provide indemnity for loss. They also offer significant expertise and assistance to reduce the insured’s cyber risks before attacks happen and reduce their cyber losses after an attack. That is, insurers offer services that are supposed to reduce the likelihood of a successful ransomware attack, and they offer services after an attack occurs, designed to minimize the costs of an attack if one occurs. The former are sometimes referred to as “pre-breach services” and the latter as “post-breach services.”

Pre-breach services include access to password management software (which makes it easy for employees to generate and deploy strong passwords to fend off brute force attacks), precision geo-blocking or

131 Id. at 2.
132 Id. at 5.
134 Talesh, supra note 121, at 479–84.
shunning (which restricts access to internet sites that are deemed dangerous), and online or in-person cyber security training (designed to teach employees the best practices for avoiding malware attacks and providing a function that allows managers to view employees’ test results and completion statistics). In theory, such pre-breach services reduce the risk of a cyber-attack by focusing on the employees—who constitute the weakest link in most organizations’ cyber security plans.

Post-breach services offered by insurers also provide potential value to insureds by minimizing the extent of the harm. These services are often provided in the form of an “incident response team.” These teams consist of groups of individuals who have expertise in a range of relevant subjects and are employed either by the insurer or by a third-party provider who has expertise in a range of relevant subjects.

a relationship with the insurer—and whom the insured is incentivized to use through reduced premiums.140 The services provided by the cyber response team can include forensics, crisis management, public relations, information technology expertise, credit monitoring, and a “breach coach” who runs the show.141 The breach coach is typically an outside lawyer recommended by the insurer who has experience and expertise in handling a range of legal issues that can arise in the context of a data breach (e.g., intellectual property, privacy law, and national security law).142 As Talesh notes, “[t]he breach coach lawyers play a critical role in developing and managing the incident response team that is formed when a data breach occurs.”143

In the context of ransomware insurance in particular, the cyber insurer and its cyber response team play an especially critical role in managing the post-breach risk. Someone on the side of the target organization must negotiate with the criminal demanding payment, they must decide whether to pay the ransom, and if a ransom is to be paid, precisely how much that should be, in what form, and under what conditions. While insurers generally leave that process to the insured, the breach coach plays an essential role. Breach coaches oversee the overall response, serving as “central coordinators when it comes to ransomware response, coordinating with computer forensic experts who can determine the extent of the attack, companies that can notify customers impacted by a breach, and IT firms that can quickly provide staffing to fix issues.”144 What’s more, if the company decides they do want to pay the ransom (or are at least open to that possibility), the breach coach then brings in a separate ransomware expert, one who has considerable experience negotiating with ransomware attackers and verifying that ransom payments will actually result in unlocked and unharmed files.145 These experts—who also are not employed by the insurer but are part of the insurer’s ransomware response team—play a unique and important role in the response. They can help negotiate for a lower ransom, for example, by deploying specialized negotiation

\begin{footnotesize}
\begin{footnotes}
\item[140] Talesh, supra note 121, at 481.
\item[141] Id. at 481–84.
\item[142] Id. at 481–82.
\item[143] Id. at 482.
\item[145] Id.
\end{footnotes}
\end{footnotesize}
strategies.146 They can also use their own databases,147 built up over the course of many ransomware negotiations, to determine, among other things, whether a ransom demand is reasonable,148 whether an attacker is reliable (i.e., whether the encryption keys will actually be provided upon payment), and whether they tend to unlock the frozen data with minimal damage to the files.149 All of this information is useful to an insured who is trying to minimize their overall losses from ransomware attacks.

\section*{C. The Role of Cyber Insurers in Ransomware Negotiations}

According to one source within the industry that we spoke to, while the typical practice is for insurers not to get directly involved in the ransom-negotiation process, some insurers do.150 This includes acts such as participating in phone calls between breach coach and client.151 Even in the typical case, however, where the insurer is remaining “hands off,” the presence of the insurance company—and its relationship with the insured and the breach coach—will inevitably have some influence on the negotiation process, at least indirectly. First, if an insured agrees to a ransom demand that the insurer deems to be excessive, the insured runs the risk of either having their premiums increased or losing coverage entirely. Second, the breach coach also has an incentive not to alienate the insurer. Note that in the event of a ransomware attack, cyber insurers typically offer their insureds a panel of attorneys (or potential breach coaches) to choose from.152 Thus, the insurers clearly have a strong financial incentive to include attorneys in their panel of preferred breach coaches who are able to keep the

146 Id.
147 Confidential Interviews with Attorneys, supra note 127.
148 It might seem odd to think of any ransom demand as being reasonable. All such demands, in an important sense, are deeply unreasonable. By reasonable here we mean something quite specific, which we discuss further below. See infra note 161 and accompanying text.
149 Melendez, supra note 144.
150 Confidential Interviews with Attorneys, supra note 127.
151 Id.
152 Talesh, supra note 121, at 482. This is not unlike the practice that liability insurers have in the context of providing legal defense counsel to represent their insureds against covered claims.
insured’s—and the insurer’s—overall costs down, including the costs of ransom payouts as well as the costs of covering the harm associated with failed ransom negotiations. Therefore, while breach coaches (and the other intermediaries they recommend to the insured to help deal with a ransomware attack) formally represent the insured, and only the insured, they have incentives to consider the interests of the insurer.153

The potential role of the cyber insurer in ransom negotiations raises an obvious question. Who does the cyber insurance policy, if at all, give ultimate control over the ransom-payment decision? The contractual authority to make the final decisions varies from policy to policy. Some policies leave the decision to the insured154—this is particularly the case where ransomware is covered as a part of a broader kidnap and ransom insurance.155 Other policies, including those offered by several major cyber insurers, expressly give the authority to the insurer.156 Specifically, these policies require the insurer’s prior written consent for any ransom paid.157 Some policies provide this consent requirement in the policy’s definition of

153 This is similar to the position of lawyers hired by insurers to defend insureds in a tort action. In “single representation” states (e.g., Hawaii) the attorney has a professional obligation only to the insured. See Finley v. Home Ins. Co., 975 P.2d 1145, 1152–53 (Haw. 1998); Pine Island Farmers Coop v. Erstad & Riemer, P.A., 649 N.W.2d 444, 451–52 (Minn. 2002) (finding dual representation is only allowed if there is no conflict of interest and that the insured provides an expressed consent after being informed of the risks and advantages of dual representation, and that there is no conflict of interest); State Farm Mut. Auto. Ins. Co. v. Traver, 980 S.W.2d 625, 632–34 (Tex. 1998). In “dual representation” states, retained counsel represents both the interests of the insurer and the insured, owing a duty to both. See Nev. Yellow Cab Corp. v. Eighth Jud. Dist. Ct. ex rel. Cnty. of Clark, 152 P.3d 737, 741–42 (Nev. 2007).

154 See e.g., TRAVELERS KIDNAP AND RANSOM COVERAGE, supra note 133, at 10.

155 See Barlyn & Cohn, supra note 133 (“American International Group Inc [], Hiscox Ltd [] and the Travelers Companies Inc [] have been receiving ransomware claims from some customers with K&R policies as ransomware attacks become more common, the companies said.”).

156 See e.g., TRAVELERS CYBERRISK COVERAGE, supra note 133, at 4.

157 These policies stand in stark contrast to kidnap and ransom insurance policies, where kidnap and ransom insurance policies give the final say on whether to pay the ransom to the insured organization or family. See, e.g., TRAVELERS KIDNAP AND RANSOM COVERAGE, supra note 133, at 10. We later discuss some differences between kidnap and ransom coverage and ransomware coverage that might help to explain this difference. See infra Part IV.B.1.
what is a covered “loss.” For example, AIG’s *CyberEdge Cyber Extortion Insurance* coverage defines a covered loss as “monies paid by an Insured with the Insurer’s prior written consent to terminate or end a Security Threat or Privacy Threat that would otherwise result in harm to an Insured.”

Note also that, while the policy may require the insurer’s consent to any ransom payments, the policy can also impose an obligation on the insurer not to withhold consent unreasonably. Moreover, even if there were no language in the policy expressly imposing a duty of reasonableness on the insurer with respect to ransom-payment decisions, a court could well decide that such a duty is implied in the consent provisions of a cyber insurance policy, just as courts imply a duty of good faith into contracts (e.g., with respect to insurers’ “duty to settle”).

This combination of rights and responsibilities—where the insurer’s consent is required but limits are placed on the insurer’s discretion to withhold consent—makes sense from the perspective of maximizing the joint welfare of the insured and insurer named in a particular cyber policy. On the one hand, because the insurer is ultimately responsible for the loss payment, and the amount of the loss payment is a function of the ransom negotiations, the insurer reasonably will want some say in the negotiation process. If the insurer had no such say—that is, if the insured had unfettered

158 See, e.g., AM. INT’L GRP., INC., supra note 129, at 115 (emphasis added).
159 Indeed, this is what AXA’s *CyberRiskConnect* policy does. X.L. AM., INC., supra note 13, at 10 (stating that insurer’s consent “not to be unreasonably withheld”). Note here the use in the policy of the term “unreasonably” with respect to the decision whether to pay a ransom, implying there are reasonable decisions to pay a ransom and unreasonable ones.
160 This is especially true because of the potential conflict of interest that can be created by giving unfettered power to the insurer to withhold consent to pay a ransom. Some of the costs of a failed ransom negotiation may not be covered by insurance (either because the expenses fall outside the policy limit or are excluded for some reason), the insurer might externalize some of the costs of a failed negotiation strategy—such as taking too hard a line on what they are willing to pay, resulting in a breakdown of negotiations—to the insured. In the standard liability insurance settlement context, this scenario is sometimes characterized as the insurer gambling with the insured’s money. To address the problem in that context, the law applies a duty of good faith and fair dealing, which requires insurers to take into account its own interests and the interests of the insured in such negotiations. See generally RESTATEMENT OF THE L. OF LIAB. INS. § 24 (AM. L. INST. 2019) (describing the liability insurer’s duty to make reasonable settlement decisions).
control over the ransom negotiation with assurance that any ransom payment would be covered—there would be an incentive for the insured to make an *unreasonable ransom decisions* (i.e., to accede to ransom demands that might, from the perspective of minimizing overall payouts to the hacker, be better to reject). ¹⁶¹ This is a form of moral hazard. But there could also be insurer-side moral hazard if the insurer were given unrestricted discretion to veto any ransom demand that is made. In that situation, the insurer would have an incentive to reject some ransom demands that reasonably ought to be accepted—in the sense that accepting the ransom demand would minimize overall losses associated with this ransom attack. ¹⁶² This is why the contract imposes a reasonableness limitation on the insurer’s ability to withhold consent for ransom payments. It is also why, if the ransom insurance policy contained no reasonableness limitation, the law would almost certainly imply one as part of the insurer’s duty of good faith and fair dealing. ¹⁶³

¹⁶¹ By “unreasonable ransom decisions” here, we mean decisions that will tend not to maximize the joint well-being of the two parties to the contract. A reasonable ransom decision, in this context, would be one that is made by a rational party who will suffer all of the losses from a particular ransomware attack. The analogy to the duty to settle context should be obvious. See Restatement of the Law of Liab. Ins. §24(2) (Am. L. Inst. 2018) (“A reasonable settlement decision is one that would be made by a reasonable insurer that bears the sole financial responsibility for the full amount of the potential judgment.”). As we discuss further below, a ransom decision that might be reasonable from the perspective of the insurer and insured in a particular ransomware situation will not necessarily be socially optimal. See infra Part IV.B.1.

¹⁶² This could happen if some of the costs of not paying the ransom are not covered under the insurance policy. In that situation, if the insurer vetoes a ransom demand, it could be because they are, in a sense, gambling with the insured’s money.

¹⁶³ There are numerous examples of the law implying such a covenant. For example, in almost all liability insurance policies, there is language requiring insureds to get the insurer’s consent before settling a claim. 3 Franklin D. CordeLL, New Appleman on Insurance Law § 20.04[2][a] (Jeffrey E. Thomas & Francis J. Mootz, III eds., Library Ed., LEXIS, database updated May 2022). Settlement without consent can result in loss of coverage. Id. By the same token, unreasonable withholding of consent by the insurer is considered a breach of the duty of good faith. Id. § 20.04[2][b]. Similarly, with liability insurance policies that include coverage for defense costs, there are typically provisions conditioning coverage on the insured’s not incurring any defense costs without the expressed consent (usually the written consent) of the insurer. Id. § 20.04[1][a]. Here too, courts have found that an insurer’s unreasonable refusal to grant such consent, even
In sum, although some cyber insurance policies give insurers the power to withhold consent to ransom payments, that power is limited both in the contract itself and, presumably, by the duty of good faith and fair dealing.164 According to one source we spoke with, however, insurers almost never invoke this contractual authority, preferring instead to defer to the preferences of the insured.165 This is not surprising for several reasons.

First, insurers may be worried about the possibility of a bad faith claim. That is, if a ransom demand were made that an insured wanted the insurer to pay, but the insurer refused or even delayed, the insurer would run the risk of extra-contractual bad faith liability.166 Second, insurers have a reputational interest in not being viewed as an obstacle to ransom payouts. It is not uncommon for insurers to pay claims that, strictly speaking, they may not be contractually required to pay, precisely because of this reputational concern.167 There are obviously limits to this concern, as evidenced by the many coverage disputes insurers do in fact litigate.168 Third, ransomware insurers, to some extent, rely on the prudence of the breach coaches, who both are experienced in these matters and are likely to have a better sense than most insureds of when a hacker is willing to negotiate and when a ransom demand is unreasonably high (as compared to the costs to the insured of saying no and opting to go the restoration route). Breach coaches, because of their expertise, have a fair amount of influence with the insureds and can often steer them away from making ill-considered ransom-related decisions, such as paying a ransom that could have been successfully negotiated down or declining to accept a ransom demand that is the best offer the insured is likely to get, which would be considerably less expensive than having to restore the overall system. Also, as already mentioned, breach coaches may

164 We say “presumably” because there is no court decision, as of now, applying the duty of good faith and fair dealing to this context.
165 Confidential Interviews with Attorneys, supra note 127.
166 There is an analogy here to the liability insurer’s duty to make reasonable settlement decisions on behalf of an insured against whom a tort claim has been brought. See generally RESTATEMENT OF THE L. OF LIAB. INS. § 24(1) (AM. L. INST. 2019) (describing the liability insurer’s duty to make reasonable settlement decisions).
167 Confidential Interviews with Attorneys, supra note 127.
168 Id.
have a long-term financial relationship with the insurer, which adds extra incentive for them to prevent the insured from making a decision that would increase the insured’s overall costs. Finally, one reason insurers seem never to invoke their contractual veto over ransom decisions is that it is often the insureds who are the ones vetoing any ransom payment. Put simply, the victims of these attacks often react with outrage and anger, and these emotions can translate into an unwillingness to “cave” to the hacker’s demands, even when it might be rational for them to do so, given the cost of the ransom and relative to the cost of restoring the system.

III. RANSOMWARE INSURANCE AND THE “EXTORTION ECONOMY”: COMPLICATING THE PICTURE

The preceding Part explained the history and the structure of ransomware insurance as a social practice. In this Part we start by reviewing what we call the “profitability complaint,” which has been lodged against ransomware insurance coverage for ransom payments. Specifically, the complaint comes from the idea that the presence of insurance makes the business of ransomware more profitable for criminals. Next, we explain why, notwithstanding this complaint, there is at least a theoretical argument that the presence of ransomware insurance might be a social good—or, put in economic terms, welfare enhancing. Nevertheless, we conclude this Part with an argument that there are market failures that may be inhibiting the ability of ransomware insurance to enhance social welfare, giving rise to the case for some form of government action.

169 In fact, we have been told that some cyber policies do not contain consent-to-pay-ransom provisions and that, with respect to those policies, insurers depend even more on the breach coach “to do the right thing” (i.e., to pay the ransom only if it is reasonable). Id. One lawyer employed at an “off-panel” firm commented that breach counsel takes some risk by doing this—opening themselves to malpractice suit alleging that the coach failed to advise paying a reasonable ransom, advised paying an unreasonable ransom and causing a subsequent loss of coverage. Id.

170 Id.

171 This assessment was confirmed in a confidential interview with one high-ranking official in an organization that was victimized by a ransomware attack. In that case, the insured decided not to pay the ransom, even though the insurer was willing to pay it and even though forcing the insurer to cover the costs of restoring the system resulted in their premiums doubling the next year.
D. THE PROFITABILITY COMPLAINT

The following is the common-sense intuition that underlies much of the critical reporting on ransomware insurance: the availability of insurance for ransom payments increases the profitability of ransomware attacks and therefore the frequency of such attacks and the amount of ransom demand.172 This view is based on the notion that entities with ransomware insurance have more money available to pay a potential ransom than entities that do not have such insurance (and that are equal in other respects). The more money a potential cyber target has to spend on a ransom payment, the greater their willingness to pay, and thus the more profitable a ransomware attack will be.173 The more profitable such attacks are, the more likely those attacks become—assuming the attackers are aware of the presence of ransomware coverage.174 Indeed, there are media reports suggesting a trend in the

\begin{flushright}
172 Dudley, supra note 10.
173 Id.
174 Whether hackers can determine which targets have ransomware coverage remains something of an open question. Organizations are not required to disclose this information to public sources. However, hackers may be able to figure out who has insurance from non-public sources. The most obvious way to do this would be to hack the insurers themselves and get their list of insureds. There is little doubt that hackers are interested in doing just that. See, e.g., Dmitry Smilyanets, ‘I Scrounged Through the Trash Heaps... Now I’m a Millionaire:’ An Interview With REvil’s Unknown, THE RECORD (Mar. 16, 2021), https://therecord.media/i-scrounged-through-the-trash-heaps-now-im-a-millionaire-an-interview-with-revils-unknown/ (quoting a representative from ransomware gang REvil that they try to “hack the insurers first—to get their customer base and work in a targeted way from there. And after you go through the list, then hit the insurer themselves.”). And there have already been a number of hacks of large cyber insurers. See, e.g., Brittany Chang, One of the Biggest US Insurance Companies Reportedly Paid Hackers $40 Million Ransom After a Cyberattack, BUS. INSIDER (May 22, 2021, 11:47 AM), https://www.businessinsider.com/cna-financial-hackers-40-million-ransom-cyberattack-2021-5 (discussing hacking of CNA). At this point, however, it remains unclear whether the recent hacking of insurance companies has resulted in the criminals getting access to the insurers’ list of insureds. Alicia Hope, Cyber Insurance Firm Suffers Sophisticated Ransomware Cyber Attack; Data Obtained May Help Hackers Better Target Firm’s Customers, CPO MAG. (Apr. 5, 2021), https://www.cpomagazine.com/cyber-security/cyber-insurance-firm-suffers-sophisticated-ransomware-cyber-attack-data-obtained-may-help-hackers-better-target-firms-customers/. What’s more, even if hackers succeed in getting the list,
direction of ransomware insurers advising their insureds to pay the ransom, as the “least expensive resolution with the lowest amount of business interruption.”

On this view, if the government could raise the costs of paying a ransom—for example, by creating a risk of civil and criminal sanctions for either the insurer or the victims, or both—the amount that the criminals can expect to be paid will go down, and the number of overall attacks should, in turn, decrease. This would be consistent with theoretical predictions that have been made with respect to bans on kidnap-and-ransom insurance. On determining whether the policyholders are covered for ransomware attacks would be a daunting task, as the hackers would have to read reams of pages of densely and obscurely worded insurance policy language. As one internet security expert put it:

> [I]t’s premature to talk about a major spike in attacks targeting insurance firms with a purpose to steal lists of customers who have cybersecurity insurance

Moreover, cybercriminals will unlikely go through lengthy cyber insurance contracts to ferret out which specific incidents are covered and what are the numerous exclusions.

This result assumes that the ransomware “market” is characterized by an upward sloping supply curve, so that the higher the expected ransom payment the greater will be the number of ransomware attacks. Although we are aware of no formal models of the ransomware market, this is how kidnap-and-ransom markets generally are modeled. Parchomovsky & Siegelman, supra note 27, at 28–31 (summarizing the literature). Several countries have banned ransom payments in response to organized crime, particularly Colombia and Italy. Id. at 29–31. These bans, however, have been in place since 1993 and 1991, respectively, in response to kidnappings in these countries. Id.

Game theoretic supports for the presence of ransom insurance increases the willingness to pay of the victims’ families. Alexander Fink & Mark Pingle, Kidnap Insurance and Its Impact on Kidnapping Outcomes, 160 PUB. CHOICE 481, 490 (2014) (finding that “the existence of a competitive insurance market increases the maximum ransom demand a family is willing to pay.”). Parchomovsky and Siegelman note that there is evidence consistent with, though not proof of, the view
the basis of such arguments, some critics of ransomware insurance are so convinced of the harmful effects of ransomware insurance that they have proposed banning it for ransom payments.178 Others have not gone so far as to call for banning such coverage, though the logical conclusion of their arguments would seem to support a ban.179 We will have more to say below about calls for a comprehensive ban.180 But first, consider the argument that, notwithstanding the profitability complaint, the presence of ransomware insurance might at least in theory be welfare enhancing.

E. The Potential of Ransomware Insurance

There is an argument, which has been largely missed in the discussions of ransomware insurance, that the existence of a thriving market in this type of coverage could actually increase social welfare, even without any government intervention in the form of bans or subsidies or direct regulation other than the sorts of regulation that apply to all forms of insurance. Let’s begin with the risk-spreading benefits of ransomware insurance that banning K&R insurance would reduce kidnappings. Parchomovsky & Siegelman, \textit{supra} note 27, at 31. For example, they note that, in the period following Italy’s imposition of severe restrictions on ransom payments, there was a substantial drop in kidnappings. \textit{Id.} at 30. They also point out, however, that that drop in kidnappings could have been the result of “a drop in the rate at which kidnaps were reported to the police.” \textit{Id.} at 30 n.111. In conclusion, they summarize the evidence with respect to kidnap-and-ransom insurance as follows: “[t]he bottom line is that while it’s difficult to prove that kidnap insurance increases kidnappings, the limited available evidence is entirely consistent with that possibility, and some theoretical models predict it.” \textit{Id.} at 31.

178 Perhaps the most well-known example of this involves Ciaran Martin, the former head of the National Cyber Security Centre. \textit{See} Sabbagh, \textit{supra} note 23; Gareth Corfield, \textit{How Do We Stamp Out the Ransomware Business Model? Ban Insurance Payouts for One, Says Ex-GCHQ Director}, \textit{Register} (Apr. 9, 2021, 10:02 AM), https://www.theregister.com/2021/04/09/ban_cyber_insurance_payouts/; Scroxton, \textit{supra} note 15.

179 The \textit{ProPublica} story would be an example of this. Dudley, \textit{supra} note 10. A research paper released by the Royal United Services Institute makes much the same argument—that cyber insurance policies are encouraging cybercriminals. JAMIE MACCOLL, JASON R. C. NURSE & JAMES SULLIVAN, \textit{CYBER INSURANCE AND THE CYBER SECURITY CHALLENGE} 38, (2021), https://static.rusi.org/247-op-cyber-insurance-v2.pdf.

180 \textit{See infra} Part IV.B.3.
insurance. Even if it is true that the presence of ransomware insurance increases the likelihood of an attack and the amount of the payouts, there are potential welfare gains from taking the risks of cyber-attack experienced by individual organizations and spread those risk over much larger pool of insureds through an insurance contract. What’s more, it is at least possible that the gains from risk distribution can more than offset any increase in losses due to moral hazard. This is a standard move in the economic analysis of insurance. Indeed, even the economists who model ransom situations conclude that as a result of the risk-spreading benefits of kidnapping insurance, the efficient outcome would be at least partial coverage despite the possible moral hazard effect.\footnote{See, e.g., Fink & Pingle, supra note 177, at 498.}

In addition to the obvious risk-spreading benefits of ransomware insurance, there is also the possibility that the presence of insurance could actually reduce rather than increase the likelihood of an attack or the severity of its consequences.\footnote{Parchomovsky and Siegelman, in their discussion of the third-party moral hazard effects of K&R insurance, discuss the possibility of insurers helping their insureds to reduce their vulnerability to kidnapping. Parchomovsky & Siegelman, supra note 27, at 45–49 (discussing loss control and monitoring by insurers).} How is this possible? The argument builds on the observation, first, that private insurance companies have a financial incentive to find ways to lower their insureds insured losses. For example, if an insurer can, by encouraging simple risk-reducing behavior on the part of their customers, lower the price they pay for insurance, that insurer can compete those customers away from, or prevent them from being competed away by, other insurers.\footnote{Ben-Shahar & Logue, supra note 37, at 203–05 (discussing insurers’ financial incentives to find ways to reduce their insureds risks). Below, however, we discuss how particular market failures may be muting those incentives. See infra notes 237–42 and accompanying text.} Also, once an insurer has collected a premium for a given policy period, any changes in behavior on the part of the insured that reduce the insured risk for that period will redound to the financial benefit of the insurer.\footnote{Ben-Shahar & Logue, supra note 37, at 203–05. We are, of course, not saying that insurance companies’ interest in maximizing profit is coextensive with society’s interest in reducing ransomware attacks. If all insurable risks were somehow miraculously eliminated, society would be better off, but insurers would be out of business. The same sort of point could be about the medical profession (if all diseases were magically eliminated) or law enforcement (if all crime was eliminated). The profit interests of insurers and the interests of society diverge at
In addition to having some incentive to reduce their insured’s risks, insurance companies also have tools with which to do so. Some of those “regulatory” tools operate *ex ante*—that is, the insurers take steps before the loss event happens that reduce the probability or magnitude of the loss—and some of the tools operate *ex post*—that is, the insurers take steps after the loss event happens to minimize the size of the loss.\(^{185}\) As for the *ex ante* tools, recall the earlier discussion of all the pre-breach services the cyber insurers are offering their insureds.\(^{186}\) To the extent insurers, through premium discounts or otherwise, can incentivize organizations to adopt essential pre-breach cyber security best practices (i.e., investing in state-of-the-art backup systems, endpoint and anti-virus protection, and security awareness training for all employees),\(^{187}\) they may actually reduce, rather than increase, the overall threat of ransomware attacks.

As for *ex post* tools, recall the earlier discussion of the critical role played by insurers’ post-breaching consulting, as they bring in breach coaches, forensic experts, public relations experts, privacy law experts, and ransom negotiators to assist with all aspects of the cyber breach.\(^{188}\) With some point. Specifically, if the risk of ransomware attack were to get sufficiently low, there is a sense in which it may no longer be in the profit-maximizing interest of the insurance industry to look for ways to reduce the risk further. However, it also seems likely that, for risks that are reasonably large and unlikely to be reduced to anything close to zero any time soon—that is to say, for most of the risks that can profitably be insured by a private insurance company—there is a wide range of overlap between the insurers’ interests, the insureds’ interest, and society’s interests. This certainly seems true for the rapidly growing risk of ransomware attacks.

\(^{185}\) For a general discussion of how private insurance companies engage in what amounts to *ex ante* and *ex post* regulation that is similar, though not identical, government regulation, see *id.* at 205–16. Insurers resist the notion that their efforts at helping insureds engage in risk- or loss-mitigation represents a form of regulation, perhaps because, if they become too involved, they (the insurers) may be held responsible beyond the coverage they have agreed to in their insurance policies. See Kyle D. Logue, *Encouraging Insurers to Regulate: The Role (If Any) for Tort Law*, 5 U.C. IRVINE L. REV. 1355, 1357–58 (2015).

\(^{186}\) *See supra* notes 136–38 and accompanying text.

\(^{188}\) *See supra* notes 139–49 and accompanying text.
respect to this type of intervention, Talesh concluded that “[p]erhaps the biggest intervention the insurance field makes is the array of risk management services it offers to shape the way that organizations respond in the event of an actual data breach.”

The active role played by insurers in *ex post* loss mitigation is unsurprising given the economic incentives faced by insurers. An insurer who is contractually obligated to reimburse any ransom payouts, as well as the cost of any failed ransom negotiations (such as the cost of restoring the insured’s locked data, as well as the insured’s business interruption losses and liability claims) will have a contractual incentive to help their insureds respond in a way that minimizes the insureds’ covered costs. Further, the insurer, through the operation of insurance law (specifically, the duty of good faith and fair dealing) as well as competitive insurance markets (and the desire to maintain a good commercial reputation), will have an incentive to manage the ransomware attack in a way that takes account of the insureds’ uncovered costs as well. Thus, taking all of these incentives into account, the insurer should be incentivized to pay the ransom—or to encourage the insured to pay the ransom—when that payment will be less than the expected costs to the parties of not paying the ransom. At the same time, the insurer will have an incentive to refuse to give consent to a ransom (where the contract gives the insurer that authority), or an incentive to encourage the insured to refuse to pay the ransom (where the contract gives the insured the final say), when doing so minimizes the parties’ overall costs.

Besides these *ex ante* and *ex post* “regulatory” tools that insurers can, and have some incentive, to deploy in order to reduce ransomware risks, there is another way in which the presence of cyber insurance can reduce the likelihood of a ransomware attack. It has to do with the risk-distribution effect of the coverage for the costs of ransomware attacks other than the payment of the ransom itself. To the extent that cyber policies provide first-party and third-party coverage against the business interruption costs of having one’s computer system locked for an extended period of time, repairing and restoring that system, and covering liabilities arising out of such costs, the expected cost to an insured organization of a potential ransomware attack is lessened. That is to say, while having coverage for the ransom payment increases the pot of money available to pay the ransom—and at least potentially increase the profitability to criminals of engaging in ransomware attacks—the coverage for the costs of ransomware attacks

190 See *supra* notes 161–63 and accompanying text for previous discussion of the duty to make *reasonable* ransom negotiation decisions.
increases the pot of money for the insured not to pay the ransom, producing the opposite effect on the profitability of the criminal enterprise.

In sum, given the risk-spreading and potential risk-reducing benefits associated with the presence of ransomware coverage, one might be tempted to conclude—contrary to the tone of the recent reporting—that the cyber insurance market should be left alone to work its magic. That conclusion should be resisted, however, because of the presence of (at least) two market failures, two externalities to be precise: the single-year-policy externality and the ransom externality.

The vast majority of property and casualty insurance policies, including cyber policies, are written on a one-year basis. As a result, insurers, when pricing the risk for a single year, will have a tendency to undervalue losses that their insureds might incur that are likely to fall outside of that one-year coverage period since the insurer will not be responsible for covering those costs. We say “undervalue” rather than totally ignore because of the probabilistic nature of insured losses. That is, whether a given loss to an insured will occur outside or inside the coverage period will be, to some extent, stochastic; and, to the extent that is the case, the insurer would have some (albeit probabilistically discounted) incentive to take those losses into account. Still, some portion of an insured’s future losses will be expected to fall outside of the insured period. And here is the problem with those losses in particular: there may be \emph{ex ante} investments in enhanced safety by the insured that would reduce or eliminate the risk of such losses that the insurer is aware of (because of its relative expertise in such matters compared with some insureds) but that the insurer will not be induced to fully incentivize (through premium discounts, say) because the cost of such risk-reduction investments need to be amortized over several years.

This point can be illustrated with a simple example. Assume that an insured faces a risk of loss that will with certainty (if it happens at all) happen within the period of the single-year-policy issued by the insurer. Assume further (a) that this risk has an \emph{ex ante} expected cost of $100; (b) is fully covered under the policy; but (c) can be eliminated with a pre-loss investment by the insured of $70. The insurer in such a scenario would have an incentive to encourage the insured to make the $70 risk-reducing investment by offering the insured a premium discount of somewhere between $70 and $100. This is because the insurer would get the full $100 expected benefit of the investment. However, here is the problem: if we changed the hypothetical so that the insured faced a risk of loss that still had an expected cost of $100 but that had an equal probability of happening in any year over the next 5 years, the insurer would not have an incentive to
offer the necessary discount. This is because some of the benefit of the insured’s investment—and of the insurer’s premium discount—would be externalized to future years, when the insurer might not be covering the risk. Indeed, an insurer in this situation, were they to provide a large up-front premium discount to encourage such an investment in long-term enhanced safety, would find themselves at a pricing disadvantage compared with competing insurers in future years, as those firms would not have incurred the cost of providing what amounts to a subsidy to the insured. It is this very possibility—of not being able to recover the cost of investments that produce safety benefits beyond the end of the policy period—that discourages the insurer from offering such premium discounts in the first instance.\footnote{191}{A similar externality arises because of the inability of insurers to get intellectual property protection for their investments in risk detection, mitigation, and pricing technologies. See, e.g., Joe Van Acker, \textit{Fed. Circ. Upholds PTAB’s Invalidation of Progressive’s IP}, \textit{LAW360} (Aug. 24, 2015, 3:27 PM), https://www.law360.com/articles/694435/fed-circ-upholds-ptab-s-invalidation-of-progressive-s-ip. This is not a problem that is peculiar to the cyber insurance market. Most forms of property and casualty insurance are sold on an annual basis, which means this externality has the potential to affect insurers’ incentives with respect to many different types of risks. Scholars have long observed, for example, that because homeowners’ insurance policies are sold on an annual basis, an externality arises. Howard C. Kunreuther, Erwann O. Michel-Kerjan, Neil A. Doherty, Martin F. Grace, Robert W. Klein & Mark V. Pauly, \textit{At War with the Weather: Managing Large-Scale Risks in a New Era of Catastrophes} 361–65 (Carol Heller ed., Wharton Risk Management & Decisions Processes Center ed. 2008).}

The second obstacle to the “leave the ransomware insurance market alone” argument is what Anja Shortland calls the “ransom externality.”\footnote{192}{SHORTLAND, supra note 11, at 171.} While the insurer and insured enjoy all or at least most of the benefits of paying the ransom demand—that is, the benefits of receiving the decryption key from the hacker—they bear only the out-of-pocket costs of doing so. That is, they will generally ignore the cost to society of increasing the incentive for future ransomware attacks. In other words, to use Parchomovsky and Siegelman’s terminology, they will ignore the third-party moral hazard effect.\footnote{193}{See Parchomovsky & Siegelman, supra note 27, at 4.} This externality can affect insurers’ and insureds’ incentives in a number of ways. Most obviously, at the \textit{ex post} stage, once the attack has occurred and the ransom demand has been received, the insurer and insured may be willing to pay ransom payments that are efficient or
To see this point, consider another fanciful but illustrative example. Imagine that all ransomware attacks were covered fully by insurance, and that all such insurance were provided (and were expected to be provided for the foreseeable future) by a single giant cyber insurance company. In that case whenever there was a ransomware attack, the insurer’s incentive on whether to pay the ransom and how much to pay would be roughly coextensive with society’s interests. Since the insurer would bear all of the costs and benefits of the decision to pay the ransom or not, the insurer’s decisions whether to pay the ransom or not will be closer to the social optimum than would be the case if some of those costs are externalized.194 Thus, if paying any given ransom increased the expected cost to all possible future victims of ransomware attacks (because of the perceived increase in the profitability of such attacks) by more than the expected cost of refusing to pay the ransom (the cost of rebuilding the insured’s network and covering business interruption costs in the meantime), then the insurer would be likely to reject the ransom. If the reverse were true, it would be likely to pay the ransom. But once we take account of the fact that every individual insurer bears only a (presumably) very small fraction of the costs resulting from the increased demand for ransomware attacks produced by their decision to pay a given ransom, they will tend to pay ransoms more often (and to pay larger amounts in ransom) than is socially cost justified.195 That is the ransom externality at the \textit{ex post} or post-breach stage of the ransomware attack. There can also be effects at the \textit{ex ante} or pre-breach stage. For example, if the insurer and insured know that they can always pay the ransomware hackers’ demanded price—while externalizing most of the resulting third-

194 The incentives of insurance companies, of course, will never be coextensive with what maximizes overall social welfare. This can be seen most clearly by recognizing that insurers would be put out of business entirely as underwriters of risk if the risks that they insure were eliminated, even if eliminating such risk would be social welfare maximizing.

195 This is also sometimes referred to as a problem of “dynamic inconsistency,” which means that it might be rationale to make one decision at one point in time (i.e., refuse to pay ransoms generally to discourage ransomware attacks), but then it becomes rational to do the opposite at a different point in time (i.e., once one is the victim of a ransomware attack, it becomes individually though not socially rational to pay the ransom). Parachomovsky & Siegelman, \textit{supra} note 27, at 34.
party moral hazard costs of that decision—their incentive to invest in \textit{ex ante} prevention would also be undermined.

Is there any evidence that the single-year-policy and the ransom externalities are currently causing insurers to underinvest in \textit{ex ante} risk or \textit{ex post} loss reduction efforts? No direct evidence exists of this connection, so far as we are aware. There is, however, recent evidence that insurance companies in the cyber insurance markets are doing less \textit{ex ante} risk regulation than one might have expected. According to a recent empirical study conducted by Shauhin Talesh and Bryan Cunningham, which included interviews of some sixty people in the cyber insurance field, most insurers are reluctant to require their insureds to adopt pre-breach risk-mitigating best practices. They found, for example, that while insurers are generally making use of big data, predictive analytics, and AI to better assess the risks of cyber insureds, most insurers seem to be unwilling to require that their insureds make use of the insurer’s pre-breach services in order to get premium discounts or to qualify for coverage at all. Instead, most insurers are merely offering those pre-breach services as options. What’s more, Talesh and Cunningham found that the vast majority of insureds are, in fact, declining those services. As a result, they conclude that “cyber insurers

196 Talesh & Cunningham, \textit{supra} note 135, at 1003–04, 1014.
197 Id.
198 Id. at 1015 (finding that “fewer than 10 percent of insureds that purchase cyber insurance actually use the vast array of pre-breach services insurers offer that would potentially reduce the insured’s potential risk”). These findings are somewhat in tension with Talesh’s earlier article on the subject, published in 2017, where he concluded:

These risk prevention tools and security ratings play an important regulatory role over organizations. First, the scans and health checks are sometimes used as a precondition for determining whether a potential company is eligible for cyber insurance. Organizations interested in insurance protection, therefore, are often interested in becoming more cyber secure. Second, the better a company scores on its health check, the greater the likelihood the insurance company will lower its premiums.

Talesh, \textit{supra} note 138, at 429. In his defense, Talesh in that paper acknowledges in a footnote that, because cyber insurance is not yet a mature insurance market, insurers do not have the “refined premium setting standards” that they have for other lines of coverage. Id. n.13. But based on his field research at the time, “the more cyber secure organizations are with good preventative tools in place, the more likely
role as quasi-regulators is largely ineffective—so far.” They attribute the insurer’s reluctance to insist that their insureds engage in cyber security best practices to the “soft market” in property and casualty insurance and the threat that the insured will simply switch to another insurer, as well as to the insurers’ insistence on continuing to use some traditional underwriting practices, such as focusing on past behavior and limiting the underwriting (and risk-assessment) process to once a year, neither of which responds to the “constantly evolving” nature of cyber risk.

organizations would be issued insurance and receive a favorable pricing arrangement.” Id.

199 Talesh & Cunningham, supra note 135, at 1015. They also conclude that most cyber insurers, in doing pre-breach risk assessments, although they are relying on big data, predictive analytics, and even AI, are using unreliable databases and, worse, are using those data misleadingly to encourage insureds to purchase higher policy limits rather than to encourage insureds’ to engage in risk reduction. Id. at 1007–11. These are both potentially serious problems that may warrant regulatory intervention, although, as Talesh and Cunningham point out, the regulators will often find themselves using the same imperfect databases in making their regulatory decisions. Id. at 1017–19. Talesh and Cunningham also lament the fact that insurers do not seem to check the veracity of statements being made on insurance applications, tending instead to rely on doing so only for those subset of cases where a claim is filed. Id. at 995, 1016–17. Such ex-post underwriting, however, at least in cases involving relatively sophisticated parties, may not be problematic, but could be seen as another form of cost-saving ex post regulation. See Ben-Shahar & Logue, supra note 37, at 215–16.

200 Talesh & Cunningham, supra note 135, at 1015–17. Kenneth Abraham and Daniel Schwarcz consider this issue as well. They suggest that the reluctance of insurers to engage in a greater degree of ex ante regulation stems from what they call the “cyber insurance gap,” the fact that “cyber insurers typically insist on setting policy limits that are well below policyholders’ economic exposures to cyber risk.” Kenneth S. Abraham & Daniel Schwarcz, Courting Disaster: The Underappreciated Risk of a Cyber Insurance Catastrophe, 27 CONN. INS. L.J. 1, 54 (2021). Because of this gap in cyber coverage, they argue:

It is difficult for cyber insurers to insist on meaningful changes to policyholders’ cybersecurity precautions if they are only covering a small percentage of the risks that may flow from a cyberattack to that firm. Relatively low coverage limits also make it harder for cyber insurers to insist that firms collect their own data regarding cyber exposure as part of the underwriting process. Additionally, the relatively small amount of capital that insurers have devoted
Interestingly, Talesh and Cunningham are not overall pessimistic about the role of cyber insurers as *ex ante* risk regulators. Rather, they conclude that insurers may serve a “meaningful” role if they follow these recommendations:

1. engage in continuous evaluation and underwriting throughout the life of cyber insurance policies,
2. make insurance premium pricing contingent on reliable evidence of good cybersecurity practices (i.e., reward good behavior with reduced premiums),
3. when necessary, require prospective insureds to make changes to improve their cybersecurity posture as a prerequisite to issuing insurance,
4. engage in dynamic risk management and loss control throughout the policy period to reduce insureds’ risk of loss.

Thus, insurers must not only add real carrots and sticks to their *ex ante* regulation—in the form of substantial premium discounts and compliance mandates, respectively—but also engage in such regulation continuously, making adjustments to their premium-discount offers and risk-reduction mandates as the AI-infused analysis of the constantly changing data, and constantly changing cyber-risk landscape evolve over time. In support of this relatively hopeful assessment, Talesh and Cunningham report that at least some relatively new insurance companies are charting a path very much in line with their recommendations and “with modest success.”

201 Talesh & Cunningham, *supra* note 135, at 1020.
202 Id. at 1020–21. Specifically, they conclude that, if insurers fully embrace the promise of new technology (including big data and AI), they can, in theory, “help increase organizations’ cybersecurity and insurer’s ability to play a positive regulatory role.” Id. at 1020. The companies that are cited as exemplars of the newer, more modern, more risk-reducing approach to insuring cyber-related risk are At-Bay...
IV. A POSSIBLE WAY FORWARD: OF LIMITED BANS (AND MANDATES)

Let us summarize where we are. Ransomware attacks present an enormous social problem. Some commentators have expressed concern that the existence of insurance for ransomware attacks makes the problem worse by providing a pot of money that makes the ransomware business, from an expected value perspective, more profitable for criminals than it would otherwise be. In response we have made a series of observations. On the one hand, it is at least possible that the presence of insurance produces overall welfare gains, either as a result of risk distribution (through the shifting of the risk of attacks from relatively risk-averse insureds to relatively risk-neutral insurers) and risk minimization (through the provision of expert pre-breach and post-breach cyber services by insurance companies, who have a stake in seeing those risks get reduced). On the other hand, there remain reasons to be worried. The single-year-policy externality and the ransom externality (or third-party moral hazard problem) are serious concerns, and they threaten to undermine insurers’ incentives to engage in an efficient level of pre-breach and post-breach risk minimization. Indeed, there is some suggestive, albeit far from conclusive, evidence that these concerns may currently be inhibiting cyber insurers’ incentives to regulate risk, as revealed in Talesh and Cunningham’s work discussed above.

These observations lead to the next set of questions. First, might there be a private ordering or Coasian solution to these problems—a way in which the market itself could internalize these externalities? Second, if the answer to that question is no, what government regulatory intervention might be worth considering and what the costs and benefits of such government

and Coalition, Inc. Id. at 1020. As one example of At-Bay’s risk-reducing innovations, they constantly monitor their insureds’ remote desktop protocol (RDP) ports, which were the source of twenty-five percent of ransomware losses in 2018 and 2019. Id. at 1024. If the insured has not closed all of its RDP ports, At-Bay apparently suspends their coverage. Id. This sort of continuous monitoring and continuously enforced cyber security protocols represent the ex ante regulatory potential of cyber insurers.

203 See supra Part III.A.
204 See supra notes 196–202 and accompanying text.
intervention might be? Although answering those questions fully is beyond the scope of this (or any single) Article, this Part begins that discussion.

A. RESPONDING TO THE SINGLE-YEAR-POLICY EXTERNALITY

A solution to the single-year-policy externality is easy enough to describe: property and casualty insurers just need to start selling multi-year insurance policies, including (for current purposes) cyber policies. The more years that are covered under a given policy, the smaller the potential externality, all else equal. For this to happen organically, without government involvement, we have to imagine a scenario in which it becomes profit-maximizing for property and casualty insurance companies to offer multi-year insurance policies. This is not inconceivable. Scholars have developed plausible models of insurance markets in which both single-year and multi-year policies could emerge. Indeed, some insurers sell multi-year policies for some types of coverage, including management liability, financial institution bond insurance and, in some countries, homeowners insurance. These markets emerge, in part, because of the perceived benefits to policyholders of locking in premiums and avoiding the hassle of going through a policy renewal. To the extent such policies already are in use, they ameliorate the single-year-policy externality.

205 If the increase in number of years of coverage were accompanied by lower policy limits, then the externality would re-emerge in a different form.

208 Kleindorfer, Kunreuther & Ou-Yang, supra note 206, at 52.

209 Scholars have long touted the potential benefit of “long-term homeowners’ insurance” as a way of forcing insurers to take into account the fluctuating nature of catastrophic losses over time. See, e.g., Kunreuther, Michel-Kerjan, Doherty, Grace, Klein & Pauly, supra note 191, at 367–71. Though the idea was not offered
The market for multi-year property and casualty insurance generally, and in the cyber market in particular, however, has not taken off on its own. The vast majority of policies are still sold on a single-year basis.210 And reasons for that are understandable. First, if a risk being insured is highly volatile from one year to the next (as cyber risk is), making pricing even a single-year-policy difficult, then pricing a multi-year policy for that risk would be even more difficult. As a result, an insurer offering multi-year cyber policies would need to charge a serious mark-up over its single-year premiums to cover this uncertainty; or the insurer would have to maintain a very large capital base to cover any pricing errors; or they would do both.211 This will generally limit the demand for multi-year contracts, at least in the primary retail insurance market.212 And the presence of the single-year externality only makes this problem worse. That is, the presence of the externality will push up prices for long-term insurance even more, further depressing demand for such coverage.

What role might government play, then, in encouraging or fostering the purchase of multi-year cyber policies? The federal government could encourage property and casualty insurers to offer cyber coverage for policy periods longer than one year by agreeing to provide federally subsidized reinsurance for such coverage or through other, more direct subsidies. More drastically, insurers could be required to offer such policies as an option, with subsidies designed to make the coverage more affordable. Such proposals come with costs and benefits, of course.213 One argument against the adoption of a multi-year policy subsidy or mandate is that, in addition to the examples of multi-year policies already in existence (discussed above),

to deal with the externality discussed here, but rather to force insurers to take into account the fluctuations in catastrophic losses over time. \textit{Id.}

210 Kleindorfer, Kunreuther & Ou-Yang, \textit{supra} note 206, at 52.

213 \textit{See infra} IV.B.3 for discussion on such subsidy and mandate ideas.
perhaps the insurance market already provides something similar to multi-year policies on a much broader scale. That is, even without multi-year contracts, the single-year-policy externality is ameliorated insofar as there are costs to switching insurers. This is because when an organization decides to switch property and casualty insurers, the new insurer will require the insured to go through the underwriting process and may presume, in the absence of good evidence to the contrary, that the switch is for adverse selection reasons. This fact can lead to a mutual expectation that insureds will tend to stay with the same insurer over time, at least for a few years, which has some of the same cost-internalizing benefits of a multi-year policy subsidy or mandate. For this reason, enacting some regulatory response to the single-year-policy externality may not strictly be necessary.

B. RESPONDING TO THE RANSOM EXTERNALITY

1. Lessons from Kidnap-and-Ransom Insurance

The ransom externality—which is, of course, the key to the extortion economy argument in favor of a ban—is a separate, and potentially more serious concern that may require a substantial regulatory intervention. What is needed is a way to internalize to cyber insurers and their insureds the cost of the third-party moral hazard effects of their ransom payment decisions. One potential source of cost-internalization, which seems to be working in the K&R insurance market, is coordination within the reinsurance industry. K&R insurance presents a very similar third-party moral hazard problem. Insurance companies provide coverage against the possibility of an individual being kidnapped, and the coverage provides not only money to pay the ransom, but the services of various professionals, including expert advice about how to avoid getting kidnapped as well as the guidance of professional ransom negotiators. If a kidnapping does occur, there is obviously a strong incentive, felt by the insurer as well as the family of the

214 Also, to the extent a multi-year policy mandate would increase costs, perhaps that cost increase could be spread further through the federal cyber insurance backstop that we discuss below. See infra 249–54 and accompanying text.
215 To use Parchomovsky and Siegleman’s language. Parchomovsky & Siegelman, supra note 27.
216 See generally SHORTLAND, supra note 11, at 67–78 (describing the ways in which the reinsurance markets, especially through Lloyd’s, provides a form of “private governance” to internalize the ransom externality).
217 Id.
victim, to pay the ransom so as to avoid the death of the victim—a loss that obviously cannot be fully compensated by any form of insurance. At the same time, the direct insurer and the insured will tend to ignore—or externalize—the effect of paying the ransom on future kidnappings—because a substantial share of those kidnappings will not affect the direct insurer or, obviously, the insured. This externality could put an upward pressure on the number and amount of ransoms being paid, which could lead to an upward pressure on the number of kidnappings and so on. This is what Anja Shortland, in her recent book on the K&R insurance market, calls the ransom externality.218

What is interesting for current purposes, however, is that Shortland documents how the reinsurance market, without help from any government, performs a cost-internalizing function of its own. Here is how it works. Virtually all K&R insurance is reinsured through Lloyd’s member underwriters, known as syndicates, which are pooled together, for purposes of covering unexpectedly catastrophic losses, in the Lloyd’s Corporation.219 The Lloyd’s Corporation, then, has the power to set capital requirements and underwriting standards for each of its syndicates.220 As a result, Lloyd’s is in a position to prevent any given syndicate—any given individual insurer—from getting into a habit of paying excessive amounts in ransom.221 As Shortland puts it, “Lloyd’s therefore has all the mechanisms in place to enforce a tacit agreement between competing insurers to operate in the long-term interest of the market.”222 What this means is that, when any given insurer pays what Shortland calls a “premium ransom”—or an unreasonably high ransom, taking into account all of the costs and benefits of ransom payouts—Lloyd’s can step in and apply some discipline.223 The overall effect is to ameliorate the third-party moral hazard effect on kidnap ransom payouts.224

218 Id. at 171.
219 Id. at 63, 175.
220 Id.
221 Id.
222 Id.
223 Id. at 176. This discipline can be severe. “If a syndicate takes on excessive risk or its business practices undermine the stability or smooth functioning of the market, it can be closed for new business and wound up.” Id. at 175.
224 Again, while this moves things in the direction of overall efficiency, it is still the case, of course, that insurers’ interests and societal interests do not perfectly overlap. See supra note 194–95 and accompanying text.
Could reinsurers serve such a similar coordinating, cost-internalizing role in the ransomware insurance market? Possibly, although not likely. For one thing, the cyber insurance market is much larger than the K&R insurance market. While total annual K&R insurance premiums written in 2019 were in the range of $250 to $300 million, the total premiums written for the cyber insurance market in 2019 were closer to $4.5 billion. And roughly forty percent of that $4.5 billion in premiums flowed to reinsurers. We have no data on how those premiums, and the accompanying risk, are apportioned among the dozens of reinsurance companies on the market. However, assuming it is spread across all of them roughly in proportion to their overall market share, coordination among the many cyber reinsurers would be considerably more difficult than it is within the K&R insurance market that is dominated by a single entity, Lloyd’s of London. This is not to say that the large cyber insurers and the large reinsurers could not, in theory, get together and provide some underwriting constraints on primary ransomware insurers. While there are over 100 direct-writing insurance companies in the U.S. that provide some type of cyber coverage, the bulk of the market share is provided by a handful of large firms. Likewise, while there are dozens of reinsurers, the lion’s share of that business is underwritten by a few very large companies.

227 Id.

228 SHORTLAND, supra note 11, at 63 (“[C]ontrary to what an internet search for kidnap insurance appears to indicate, there is only one place where [kidnap] insurance is underwritten: Lloyd’s of London.”).

however, is whether they would have some means of enforcement comparable to the tools available to Lloyd’s. We are dubious.\footnote{This would not be the first time that large U.S. property and casualty insurers, together with large reinsurance companies have gotten together to impose market discipline on the smaller insurers. See, e.g., Hartford Fire Ins. Co. v. California, 509 U.S. 764 (1993) (addressing whether various “conspiracies” among U.S. insurers and foreign reinsurers to require certain changes to the standard commercial general liability insurance policy violated the Sherman Act or was instead protected by the McCarran-Ferguson Act). But we are aware of no such efforts by reinsurers to coordinate underwriting practices on the part of cyber insurers.}

In the absence of coordination among cyber insurers and reinsurers, the other option is the U.S. government. That is, the federal government could perform a regulatory role with respect to the ransomware insurance market, seeking to discourage excessively high ransom payments from being made and encourage best practices by insurers, ransom negotiators, forensics firms, and other experts. Indeed, the framework already exists for this form of federal regulatory involvement. According to a recent advisory from the U.S. Department of Treasury, current U.S. law forbids ransom payments, or any payments, by U.S. parties (individual or organization) to certain foreign parties who are connected with countries subject to sanctions.\footnote{U.S. Dep’t of the Treasury’s Advisory, \textit{supra} note 25, at 3. Specifically, the Advisory provides as follows: Under the authority of the International Emergency Economic Powers Act (IEEPA) or the Trading with the Enemy Act (TWEA), U.S. persons are generally prohibited from engaging in transactions, directly or indirectly, with individuals or entities (“persons”) on OFAC’s Specially Designated Nationals and Blocked Persons List (SDN List), other blocked persons, and those covered by comprehensive country or region embargoes (e.g., Cuba, the Crimea region of Ukraine, Iran, North Korea, and Syria).} This prohibition is enforced by the Department of Treasury’s Office of Foreign Assets Control (“OFAC”).\footnote{Id. (citation omitted). Thus, by the terms of this advisory, any ransomware payment—which is a type of transaction—with any party on OFAC’s SDN list would be prohibited by law. The statutes cited as authority for this prohibition are the Trading With the Enemy Act of 1917, 50 U.S.C. §§ 4301–41 and the International Emergency Economic Powers Act, 50 U.S.C. §§ 1701–06.} OFAC maintains a list of “Specifically
Designated Nationals and Blocked Persons” (“SDN List”), which are parties that all U.S. persons are forbidden to engage with, directly or indirectly.234 Making a payment to one of these parties can subject the payer, as well as anyone who facilitates the payment (i.e., payer’s insurer), to substantial civil or criminal penalties.235 While a ransomware victim who is attacked by someone on OFAC’s SDN List can apply for special permission (or a license) to enter into negotiations with that prohibited party, there is a “presumption of denial” of such requests.236 OFAC further says that “companies that engage with victims of ransomware attacks, such as those involved in providing cyber insurance, digital forensics and incident response,” should “implement a risk-based compliance program to mitigate exposure to sanctions-related violations.”237

2. The Role of OFAC: Is Ransom Insurance Already Banned?

Does this mean that ransomware payments and ransomware insurance are already banned by U.S. sanctions law? Yes and no. On the one hand, there is definitely a prohibition on making payments to those ransomware attackers who appear on the SDN List, whether the payment comes from the victim or someone working on behalf of the victim, such as the victim’s ransomware insurers.238 On the other hand, the ban applies only to payments to parties on the forbidden SDN List.239 Not all ransomware attackers are on that list. How comprehensive the ban is depends on how comprehensive that list is. Also, even insofar as the OFAC regulations constitute an existing ban, it is only a limited or contingent ban. Specifically, the OFAC appears to have some discretion in deciding whom to seek

234 Id. See also Specifically Designated Nationals and Blocked Person List (SDN) Human Readable Lists, U.S. DEP’T OF THE TREASURY, https://home.treasury.gov/policy-issues/financial-sanctions/specially-designated-nationals-and-blocked-persons-list-sdn-human-readable-lists (Apr. 11, 2022) (“As part of its enforcement efforts, OFAC publishes a list of individuals and companies owned or controlled by, or acting for or on behalf of, targeted countries.”).

235 U.S. Dep’t of the Treasury’s Advisory, supra note 25, at 3.

236 Id. at 5 (“[L]icense applications involving ransomware payments demanded as a result of malicious cyber-enabled activities will be reviewed by OFAC on a case-by-case basis with a presumption of denial.”).

237 Id. at 3.

238 Id.

239 Id.
penalties against for such violations as well as in deciding whether there has been a violation at all. Third, it appears that if ransomware victims, often with the help of their insurers, cooperate with OFAC investigators—immediately bring the attack to OFAC’s attention and follow their guidance about how to proceed—the risk of any penalty is minimized. Indeed, there is a longstanding OFAC compliance process that insurers have been following for many years due to the application of the OFAC regulations to the K&R market. Further, there is little evidence the OFAC is serious about enforcing the ban ransomware payments to listed entities, as there has not yet been a reported case of sanctions being imposed.

The practical effect of this regime, then, is a limited and contingent (and to date largely unenforced) ban on ransomware payments (by victims or insurers) to some subset of ransomware attackers, with OFAC playing the role of shadow regulator. We are not suggesting that OFAC is doing with ransomware insurance anything like what Lloyd’s does with K&R insurance—providing a centralized sources of rules of conduct and a means of disciplining insurers who fail to follow best practices. OFAC itself has limited resources, many other responsibilities, and—to date—no apparent appetite for actually sanctioning parties who transact with listed ransomware attackers. Coordinating the loss-control practices of dozens of cyber insurers may just not be a high priority. But the potential is there. For example, in its recently published guidance, OFAC noted that a key to avoiding penalties is for organizations to “implement a risk-based compliance program to mitigate exposure to sanctions-related violations,” and this recommendation was expressly applied to cyber insurers, digital forensics companies, and others.

241 Id.
243 U.S. Dep’t of the Treasury’s Advisory, supra note 25, at 3.
who participate in the “processing ransom payments.” Further, in its most recent guidance, OFAC has made clear that a primary mitigating factor in avoiding fines and other enforcement efforts is to engage in just the sort of pre-breach and post-breach ransomware risk-minimization that we described above—that insurers are in a good position to identify and encourage. Specifically, OFAC says:

Meaningful steps taken to reduce the risk of extortion by a sanctioned actor through adopting or improving cybersecurity practices, such as those highlighted in the Cybersecurity and Infrastructure Security Agency’s (CISA) September 2020 Ransomware Guide, will be considered a significant mitigating factor in any OFAC enforcement response. Such steps could include maintaining offline backups of data, developing incident response plans, instituting cybersecurity training, regularly updating antivirus and anti-malware software, and employing authentication protocols, among others.

Thus, OFAC is using the sanctioning power of the U.S. government to add additional impetus for all parties involved (insureds and insurers) to implement cybersecurity best practices.

Further, the mere presence of OFAC, and at least the possibility that it will not grant an exception to permit payments to an attacker who appears on the SDN list, creates a degree of uncertainty about insurance coverage for ransomware payments, and that uncertainty can be a useful deterrent. That is, the existence of a potential fine from OFAC, should an insurance payment be deemed to be in violation of OFAC rules, increases the likelihood that any given potential ransomware target may not ultimately have coverage.

244 Id.
other words, even if there is an insurance policy covering ransomware attacks, one would expect that coverage to be less likely to include insurance for the ransom payment itself insofar as such a payment could potentially be deemed a violation of OFAC regulations and thus a violation of public policy.247 Of course, the uncertainty with respect to the OFAC fines also has a downside, insofar as it undermines the risk-spreading value of the insurance to the insured and thus discourages the purchase of coverage. The key is to make sure that hackers have greater uncertainty with respect to OFAC fines than the insureds and their insurers do. Indeed, perhaps this is one function that OFAC compliance performs; allowing the insurer and insured, to maintain some certainty that they will not be fined, while not disclosing this information to the hackers.

It is possible, then, that the current regime—including the limited ban on ransomware payments to parties on the SDN list and the emerging oversight role played by OFAC—manages the ransom externality (and the single-year-policy externality) reasonably well. Perhaps the inducement from OFAC to adopt best practices in terms of cybersecurity will be enough to motivate a change in behavior. If that is so, then no additional regulatory intervention would be necessary. On this view, what would be needed is time—time for the insurance market to develop its ability to price ransomware coverage and to develop reliable standards of cyber hygiene that insurers are willing to enforce (and continuously monitor), as some insurers are already beginning to do.248 Therefore, if one is persuaded by the argument so far, one might be tempted to say to the critics of ransomware insurance, be patient. The insurance market and the U.S. government are figuring this out, and the solution does not need to involve, for example, banning the sale of ransomware coverage across the board.

247 When insurers are found to have issued an insurance policy that provides coverage in violation of clear public policy, those insurers often are able to void coverage. One example involves insurable interests. If an insurer sells a policy that provide property coverage to someone who has no insurable interest in the covered property, the coverage is voided. Jacob Loshin, Insurance Law’s Hapless Busybody: A Case Against the Insurable Interest Requirement, 117 YALE L.J. 474, 479 (2007). Even those hackers who are not presently on the SDN list must factor in the possibility that they will be put on the list and then their targets, and any possible insurer of their targets, will face the risk of an OFAC fine.

248 Recall the examples, cited by Cunningham and Talesh, of At-Bay and Coalition. See supra note 202.
In our view, however, there is a substantial likelihood that the centralizing and cost-internalizing role played by OFAC will not be enough. How likely is it, for example, that OFAC will decide to impose sanctions on a party who makes a ransom payment because they had, prior to the attack, failed to adopt recommended cybersecurity best practices? Because they have not done so to date (or at least not such sanctions have not been publicly reported), the likelihood seems small. As a result, the presence of OFAC and the threat of sanctions will have little effect on parties’ pre-breach cybersecurity practices. Further, even if OFAC can make a credible commitment to include cybersecurity best practices in its determination of who gets penalized, those penalties are limited to payments made to parties on the SDN list, which is only a subset of the universe of hackers. For these reasons, we still have concerns that the ransom externality could lead to precisely the extortion economy that the ProPublica article predicted.

In the next section we offer an alternative, admittedly more radical proposal as a way of sparking further discussion.

3. Another Proposal: Banning the Bad Insurance, but Encouraging the Good Insurance

Here is the proposal in brief. First, Congress would enact a ban on any payments by a ransomware insurer to cover the costs of a ransom payment, whether paid to the insured or paid directly to the attacker, and whether the attacker appears on the SDN list or not. In other words, under this proposal, Congress would impose a ban on insurance coverage of ransomware payments only. Second, the ban would be accompanied by some form of federal subsidy for cyber insurance coverage for the other costs of ransomware attacks, including the costs of restoring the computer system as well as business interruption and liability costs. The idea behind this two-pronged approach is straightforward: both parts of the proposal—the ban and

249 See supra note 246.
250 Dudley, supra note 10.
251 We developed this proposal independently, but after our draft was posted on SSRN the following paper, which makes a similar proposal, was brought to our attention. See Jan Martin Lemnitzer, Why Cybersecurity Insurance Should be Regulated and Compulsory, 6 J. CYBER POL’Y 118 (2021). Lemnitzer argues that small to medium sized businesses should be compelled to buy cyber insurance. Id. at 129. In his view, it is this segment where cyber insurance would do the most good. Id. In part, Lemnitzer points to the lagging cybersecurity practices of smaller entities, which has lead them to be more frequently targeted by cybercriminals. Id. at 125, 131.
the mandate—would work together to undermine the profitability of ransomware attacks. The ban would reduce the available resources to those who decided to pay ransoms, and the subsidy/mandate would increase available resources for those who refused to pay ransoms. Further, by undermining the profitability of ransomware as a business model, this dual approach would reduce the threat of such attacks, thereby resulting in lower costs for the program—lower cyber insurance premiums (since the risk would be lower) and, in turn, smaller federal subsidies necessary to fund the program (since the premiums would be lower).

That is the basic idea. Now let us unpack it just a bit, beginning with the ban. The ban would, again, be on insurance payments for ransom payouts in the context of ransomware. It would be backed up with substantial fines, which themselves would also be made uninsurable. We are imagining a ban at the federal level, presumably implemented through a new act of Congress. That is, we are not making the case that OFAC or the Treasury Department generally has the authority to ban ransomware insurance coverage. So far as we know, other than the ban on payments to parties on the SDN list (discussed above), this would be the first federal ban of a particular type of insurance coverage. It would not be the first ban of any sort on a type of insurance coverage. Many states in the U.S., for example, expressly prohibit liability insurance coverage for punitive damages.252 In addition, many states disallow coverage for intentional wrongdoing.253

Although this proposal would ban insurance payouts to cover ransom payments, accompanied by a threat of civil or criminal penalties against insurance companies for noncompliance, it would not ban ransom payments made by the victims of the attacks themselves. The main reason for this limitation is simple: enforcing a comprehensive ban would be an administrative nightmare. Given developments in technology, it has become increasingly easy for criminals to launch a potentially devastating ransomware attack on hundreds, even thousands, of potential victims simultaneously.254 And while the examples of successful attacks that tend to

253 Id. at 432.
254 See, e.g., James Rundle, Kim S. Nash & David Uberti, As Ransomware Proliferates, Insuring for it Becomes Costly and Questioned, WALL ST. J. (May 12, 2021, 5:30 AM), https://www.wsj.com/articles/as-ransomware-proliferates-insuring-for-it-becomes-costly-and-questioned-11620811802 ("Groups such as
generate headlines involve large ransom payouts from medium and large-sized organizations, there are also many attacks on smaller players (small businesses and individuals) who find their systems have been locked up. Many smaller attacks never even get reported to the police. How would the government possibly enforce a ban against so many different target individuals and organizations simultaneously? This does not seem doable.

In addition, the ban under this proposal would have an exception for ransom payouts by insurers deemed necessary to protect the health or safety of an individual or group of individuals. This exception is both a moral and a practical necessity. If an attack on a U.S. hospital were to interrupt the provision of medical services, patients could be harmed or killed.

DarkSide, for example, believed to be behind the hack . . . on Colonial Pipeline Co., run a franchise business, licensing their ransomware to hacker entrepreneurs and providing them with support and training”). Indeed, Chinese hackers were able to exploit a flaw in Microsoft’s Exchange e-mail server to attack hundreds of businesses. Kate Conger & Sheera Frenkel, Thousands of Microsoft Customers May Have Been Victims of Hack Tired to China, N.Y. TIMES (Aug. 26, 2021), https://www.nytimes.com/2021/03/06/technology/microsoft-hack-china.html.

255 See BARRACUDA NETWORKS, INC., SPEAR PHISHING: TOP THREATS AND TRENDS 7 (2022), https://assets.barracuda.com/assets/docs/dms/Spear-phishing-vol7.pdf (“[A]n average employee at a small business with less than 100 employees will receive 350% more social engineering attacks than an employee of a larger enterprise. SMBs are an attractive target for cybercriminals because collectively they have a substantial economic value and often lack security resources or expertise.”); VERIZON, 2019 DATA BREACH INVESTIGATIONS REPORT 5 fig.2 (2019), https://www.verizon.com/business/resources/reports/2019/2019-data-breach-investigations-report.pdf (“43% of breaches involved small business victims.”).

257 Of course, there are far fewer ransomware insurers than there are potential ransomware victims, which is why banning, or at least regulating, the ransomware insurance market might be more practical than an outright ban on all payments.

Similarly, attacks on key infrastructure facilities, pipelines, and power grids could pose risks to health and life. An infrastructure attack, for example, that took out the electrical grid of an entire region of the country would disrupt patient care in every hospital in the region—while most hospitals have generator backups, they could also be affected by the attack if the fuel supply is disrupted. In either case, if the administrators of a hacked hospital or power facility were to decide to pay the ransom rather than take the risk of injury or death that might result, and an insurance company were to facilitate that payment, it seems unlikely that the government would, or should, follow through with any serious punishment on anyone other than the hackers.259

One concern with having such a life/health exception is that it might actually incentivize hackers to focus on hospitals and sensitive infrastructure even more than they already do, on the theory that such targets are more likely to have insurance coverage and thus be more likely to pay—or pay more. We have three suggestions for how to respond to this perverse incentive effect of the life/health exception.

First, this effect could be lessened by obscuring that life/health exception from the outside world, especially from potential hackers. This could be done using an approach similar to the current approach used by OFAC. That is, the government would announce publicly that insurance for all ransomware payments is banned, with no exceptions, except at the discretion of the regulatory agency tasked with overseeing these transactions (such as OFAC). That agency would then be responsible for deciding if exceptions should be made in cases in which the threat to life or health warrants doing so. The key is maintaining as much secrecy or obscurity as possible about any exceptions that are granted. This would create uncertainty with the potential hackers, and that uncertainty would serve as a tax of sorts on every ransomware attacker with respect to every attack.

Second, we could make it harder for hackers to successfully attack certain classes of sensitive targets, such as hospitals and infrastructure. For example, we could make best-practice pre-breach cyber hygiene at hospitals,
utilities, and other such sensitive locations a matter of federal mandate.260 The idea would be to harden these targets relative to others (where the risks of attacks can more realistically be fully insured), even though we are hoping to discourage ransomware attacks on all targets. Others have proposed creating federally mandated levels of cyber security. For example, Cunningham and Talesh, in their recent detailed proposal to adopt a comprehensive federal program for dealing with the risk of catastrophic cyberattacks, suggest mandating that all purchasers of cyber insurance products be required to maintain a baseline level of cyber hygiene, to be determined jointly by the Secretary of Treasury, Cybersecurity Infrastructure Security Agency of the Department of Homeland Security (CISA) and the new National Cyber Director (NCD).261 We are generally sympathetic to this suggestion, though it might make sense to focus such a mandate, at least initially, on the most vulnerable potential targets.262

Finally, as a matter of U.S. criminal enforcement and diplomatic policy, we could make clear that ransomware attacks on U.S. hospitals and infrastructure will be prosecuted vigorously, if within U.S. criminal jurisdiction, and, if outside U.S. criminal jurisdiction, will be made a top diplomatic priority. Although the U.S. government cannot stop Russian-based hackers, Russia probably can. And as the U.S. tries to figure out what line in the sand it is going to draw for Russia on ransomware, maybe the following could be it. If you do not stop any cyberattacks on our hospitals and infrastructure emanating from within your borders or from other jurisdictions under your sphere of influence, we will take sanctions to the next level.263

260 As the OFAC encourages compliance with the CISA recommendations, an agency could mandate such compliance for hospitals and other key infrastructure. See \textit{supra} note 246.

262 Focusing the most draconian safety mandates on the parties who are most likely to be targeted for attacks is a common strategy in the terrorism context. Think of the special security measures taken after 9/11 at all federal buildings, which were perceived to be among the most likely future targets. \textit{See, e.g.}, U.S. \textsc{Dep't of Homeland Security, FEMA 430, Site and Urban Design for Security: Guidance Against Potential Terrorist Attacks} (2007), https://www.fema.gov/sites/default/files/2020-08/fema430.pdf.

263 \textit{See, e.g.}, Dmitri Alperovitch & Matthew Rojansky, \textit{Ransomware Attacks Won't Stop Unless Biden Keeps the Pressure on Putin}, \textsc{Wash. Post} (July 6, 2021,
Just as the ban on ransom coverage would undermine the profitability of the ransomware market, so too would a subsidy for ransomware coverage for the costs other than the ransom payments—specifically, for the costs of refusing to pay the ransom. Furthermore, if a ban on insuring ransom payments were enacted, then a subsidy for cyber coverage generally would almost certainly be necessary to avoid causing a massive increase in what Kenneth Abraham and Daniel Schwarz have called the “cyber insurance gap.”\footnote{Abraham & Schwarz, supra note 200, at 56.} This gap is the vast difference between the amount of cyber insurance coverage currently being sold and the true economic risk that such attacks potentially represent.\footnote{Id.} The problem is that eliminating the ability of insurers to pay a ransom demand would deprive them of one important tool for minimizing their own insured costs of providing ransomware coverage. That is, some ransomware attacks may prove to be so costly that it is far cheaper for the insurer to pay the ransom than to cover the other costs resulting from the attack. This is the flipside of the collective action problem that arises if we permit insurers to cover ransom payments. Sometimes the short-run, cost-minimizing strategy for a particular insurer with respect to a particular attack, is to pay the ransom. But deprived of that tool, insurers may become less willing to write cyber policies in the first instance or perhaps they would only write the coverage with even lower limits than they are now willing to provide. This would be the greatest problem for attacks that might be considered part of a proxy cyber war on the U.S. by foreign countries. Such attacks present the sort of systematic or correlated risk that insurers have normally sought to avoid covering through the use of blanket exclusions (i.e., the war exclusion).\footnote{See Adam B. Shniderman, Prove It! Judging the Hostile-or-Warlike-Action Exclusion in Cyber Insurance Policies, 129 YALE L.J.F. 64 (2019) (discussing exclusions for acts perpetrated by hostile nations). A CrowdStrike global survey}
What should the subsidy for non-ransom ransomware costs look like? One possibility would be to replicate the approach used to stabilize the terrorism insurance market after 9/11. The Terrorism Risk Insurance Program (“TRIP”) was created in 2002 by the enactment of the Terrorism Risk Insurance Act (“TRIA”).267 The stated goal of the program was to provide temporary stability to commercial property insurance markets in the face of fears of a possible increase in terrorist attacks on U.S. soil.268 What it has become over time is a more-or-less permanent federal subsidy to the U.S. terrorism insurance market.269

There are two essential components of the program. First, there is the supply-side mandate—that is, insurers are required to offer terrorism risk coverage in many of their property and casualty lines.270 The mandate says

267 Terrorism Risk Insurance Act of 2002, Pub. L. No. 107–297, 116 Stat. 2322 (2002). The program, which has been reauthorized four times (most recently in 2019), includes a mandate that all commercial property and casualty insurers offer terrorism risk insurance coverage. FED. INS. OFF., U.S. DEP’T OF THE TREASURY, REPORT ON THE EFFECTIVENESS OF THE TERRORISM RISK INSURANCE PROGRAM 5 (2020), https://home.treasury.gov/system/files/311/2020-TRIP-Effectiveness-Report.pdf (describing mandate). This mandate does not require insurers to offer the coverage at a particular price, nor does it require that insureds purchase the coverage. Id. It only requires that coverage be made available. Id.

268 FED. INS. OFF., supra note 267, at 15 n.57.

270 There are a number of lines of insurance that are expressly excluded from the TRIP program, such as professional liability insurance. See 31 C.F.R. § 50.4(w) (2019).
nothing about the price that insurers should charge for this coverage (presumably whatever price the market can bear), and there is no mandate on the buyer’s side requiring the purchase of terrorism insurance. The coverage merely has to be offered.

Second, in exchange for being required to offer this coverage, insurers are able to participate in a federally funded terrorism-risk reinsurance program, sometimes referred to as the federal “backstop.” Because of this backstop, in the event a terrorist attack that is certified by the Secretary of Treasury, causes a very large financial hit to the insurance industry, the U.S. government will step in and bear some portion of the cost—that is, roughly eighty percent of the cost above some triggering threshold (around $200 million), with less a twenty percent individual insurer deductible, up to a cap of $100 billion. Afterwards, the government is required to recoup some portion of the reinsurance it provides, and is empowered but not required to recoup the rest, through surcharges on the insurance companies over time.

The subsidy exists largely because of the likelihood that, in the event of a very large loss, the government will not invoke its discretionary recoupment power, and indeed, following a massive attack on the U.S. in which the country is reeling from financial losses, may not even carry through with the mandatory recoupment.

Could such a program—with a “soft” insurer-side mandate plus the promise of a federal backstop—help to reduce the cyber insurance gap, especially in a world in which there is a new ban on paying ransomware demands? What has TRIP done for the terrorism insurance market? It is generally considered to have been a success, in the sense that commercial property and casualty coverage for terrorism risks have been stable and insurers have been willing and able to offer the coverage at prices that are

272 See, e.g., id. at 55.
274 Id. at i (“As insured losses rise above $37.5 billion, the Secretary is required to recoup a progressively reduced amount of the outlays. At some high insured loss level, which will depend on the exact distribution of losses, the Secretary would no longer be required to recoup outlays.”).
275 Cunningham and Talesh propose such an idea as part of their “Catastrophic Cyberattack Resilience Act.” Cunningham & Talesh, supra note 261, at app. A.
not considered outrageous. However, there is also evidence that, while the adoption of TRIP increased the take-up rates of terrorism coverage over time, there are still a lot of businesses (in the neighborhood of thirty-seven percent) that decline to purchase the (TRIP-subsidized) terrorism risk coverage that is offered to them. What this means is that many commercial enterprises remain uninsured or underinsured for terrorism-related risks.

Less than stellar take-up rates for terrorism insurance is a problem for the obvious reason that if a catastrophic series of attacks were to happen, those businesses that did not purchase terrorism coverage may find themselves in dire financial difficulty. But less than stellar take-up rates for ransomware insurance—not coverage for ransom payouts, but coverage for the other costs of such attacks—comes with an additional cost. It would undermine the credibility of public commitments not to pay ransoms, thereby undermining our attempt to disrupt the extortion economy. What can be done about this? In addition to enacting a TRIP-like program of insurer-side mandate and federal backstop, what about the introduction of a buyer-side

276 See, e.g., FED. INS. OFF., supra note 267, at 2, 82 (concluding that the program mostly meets the goals set for it).

277 Id. at 28 ("Analyses by Treasury between 2005 and 2014 found that the take-up rate, when measured by the percentage of policies containing terrorism coverage, increased from 27 percent in 2003 (the first full year of the Program) to approximately 60 percent by 2006."). Others have proposed either creating a new federal cyber-attack reinsurance regime on the TRIP model or simply expanding TRIP to cover non-terrorist cyber-attacks. See, e.g., Cunningham & Talesh, supra note 261, at 51 (proposing the “Catastrophic Cyberattack Resilience Act,” which would create a federal government backstop for the “cyber insurance ecosystem.”); Abraham & Schwarcz, supra note 200, at 65 (suggesting the possibility of “[e]xpanding federal reinsurance to apply to all cyber catastrophes, rather than just those that meet the definition of terrorism”). But the reasons these scholars give for providing a federal backstop are primarily based on the catastrophic nature of the risk of cyber-attacks. For example, as Abraham and Schwarcz correctly point out, the risk of cyber-attack, unlike almost all other insured property and casualty risk, is not geographically bounded. Id. at 51. Even the worst hurricanes and earthquakes, which can involve a large geographical area, are ultimately bounded by geography. Similarly, as Cunningham and Talesh rightly emphasize, the possibility that insurers will, in the event of a massive coordinated cyber-attack, invoke the war exclusions in their policies, dramatically increases the likelihood that many claims would go uncovered. Cunningham & Talesh, supra note 261, at 20.

278 Take-up rates also vary greatly by region and even by city. See FED. INS. OFF., supra note 267, at 39 fig. 26 (noting Houston’s take-up rate in 2019 was fifty-five percent, whereas Washington, D.C.’s was eighty-four percent).
mandate as well? That is, we could enact a requirement that businesses and nonprofits purchase cyber insurance coverage. Insurance mandates are not unheard of. State governments have long required businesses to maintain workers compensation insurance or car owners to maintain liability insurance. More recently, the federal government has famously required individuals to purchase health insurance. Also at the federal level, although the National Flood Insurance Program (NFIP) does not directly mandate that all homeowners purchase federal flood insurance, it does require that anyone getting a federally backed mortgage in such a zone have flood coverage. However, because many banks seem to be unwilling to enforce the flood insurance mandate, only thirty percent of homes in the highest-risk flood zones carry flood insurance, notwithstanding the mandate. For that reason, in order to reduce the flood insurance gap, some have proposed making that mandate more direct, along the lines of the

Affordable Care Act’s individual mandate. Making cyber insurance mandatory would similarly reduce the cyber insurance gap.

Mandating the purchase of non-ransom ransomware costs would provide a number of benefits. First, closing the cyber coverage gap would discourage ransomware attacks. This is because, if the vast majority of American businesses and nonprofits are covered by federally backed cyber insurance for any harms the attackers cause, then hackers’ ability to extort ransom payments would be undermined. Encouraging, even requiring, the purchase of cyber coverage for the non-ransom costs of cyberattacks would reduce the profitability of such attacks, by reducing the cost to insureds of refusing to pay a ransom. Further, if this mandate/subsidies (along with the ban) were to dramatically undermine the incentive to engage in ransomware attacks in the first place, then the price of such coverage (and the cost to the federal budget of the subsidies) would be likewise diminished. That is, because mandatory insurance for non-ransom costs of ransomware attacks, and mandatory non-insurance of the ransom, would send a credible signal that the ransom payment would not be forthcoming, the price of the coverage would be reduced.

In addition, if insurers have more at stake in the event of a continuing onslaught of ransomware attacks, they will have much greater incentive to do better at pre-breach, ex ante regulation of their insureds. And given insurers’ superior access to direct data on what works and what does not in terms of pre-breach risk reduction (data that would accrue over time as they manage more claims), they would be in a good position—perhaps even a better position than federal regulators—to identify and implement truly optimal cyber hygiene practices among their insureds. Finally, closing the cyber insurance gap would provide the risk-spreading benefits that insurance is meant to provide—spreading the costs of ransomware attacks over the broader insurance pool.

See supra note 280 and accompanying text for discussion on the Affordable Care Act.

Of course, any proposal to require mandatory insurance coverage would have many obstacles to overcome, including determining what the right amount of coverage to require and the precise terms of the coverage. The few attempts that have been made by governments to require cyber coverage thus far have not been particularly successful. See Hai Jin Park, Incentivizing Cybersecurity Through Cyber Insurance: Benefits and Pitfalls of Mandating Cyber Insurance (Mar. 24, 2022), at https://ssrn.com/abstract=4065565 (discussing efforts by governments of California and South Korea to implement mandatory cyber coverage.).

This again is consistent with the Abraham and Schwarz observation. See Abraham & Schwarz, supra note 200, at 56–57, 65, 67.
There are, of course, a number of serious objections that one could raise in opposition to this idea. First, with respect to the insurer-side mandate and backstop idea, why provide such a program for cyber risk, among all the potential catastrophic risks that might benefit from such a regime? Why not create a federal pandemic risk insurance program? Or, more generally, a federal disaster risk insurance program? In fact, although these questions take us well beyond the scope of this paper, such programs might well be good ideas and for some of the same reasons suggested here: to close the insurance gaps in those areas, putting the insurance industry on the hook for a greater fraction of those losses, and thereby incentivizing them to find ways to reduce these risks, as well as providing a means of risk spreading that has advantages over counting on _ex post_ government relief. But we need not make those arguments here. A reason for beginning with cyber insurance is the additional rationale of disrupting the ransomware extortion economy—to interrupt the cycle of attacks that has made the ransomware market so profitable for so many.

CONCLUSION

The problem of ransomware attacks is pervasive, growing, and likely to continue to grow for the foreseeable future. Recent hacks originating in China and Russia have made ransomware a significant political issue. Given the potentially devastating costs of being held up by ransomware hackers, that organizations have turned to insurance as a way of managing this substantial and growing risk is unsurprising. But ransomware insurance as a social practice has come under attack. Such insurance, the argument goes, is fueling a cycle of criminal activity and providing substantial funding for criminal enterprises; making the problem worse than it would otherwise be. As a result, some critics have suggested banning such insurance.

We have argued that the story of ransomware insurance is more complex than previous reports have suggested. Insurers do much more than indemnify insureds for losses, such as by paying the ransom or the cost of restoring the network. They also offer significant pre-breach services intended to reduce the risk of a successful attack or reduce the magnitude when one ultimately happens. While recent research suggests the take-up on those services from insureds is currently low, the market is still nascent, and the rising premiums for cyber insurance may give insureds a reason to take greater advantage of these services. In addition, insurers offer post-breach services designed to assist insureds in responding to a cyberattack. Those
services may help lower the overall costs of cyberattacks, by helping insureds to negotiate lower ransom payments or even to decide to refuse to make ransom payments in favor of rebuilding their networks, the costs of which are also covered under these policies.

To be sure, there are inefficiencies arising from ransomware insurance that need to be addressed. Both the single-year-policy externality and the ransom externality can lead insurers and insureds to underinvest in preventing successful ransomware attacks and to pay excessive ransoms when such attacks are successful. Thus, the best case for ransomware insurance entails intelligent regulation of the ransomware insurance market. Others have offered suggestions for such regulation, including recommending government subsidies for (and perhaps even a mandate of) multi-year cyber policies that cover the costs of ransomware attacks, with perhaps a limited ban on coverage for ransomware payments themselves. Such regulation could in theory reduce the externalities associated with ransomware coverage and help private ransomware insurance—together with the U.S. government, perhaps through the involvement of the OFAC—serve as a socially beneficial regulator of ransomware risk. Given this possibility and the clear risk-distribution benefits of ransomware insurance (especially in cases involving risk to life and limb), we conclude that it is, at the very least, too early to declare that ransomware insurance is a net negative for society. Thus, we propose a limited ban on insuring ransom payments—with exceptions for situations involving potential serious physical harm—with a government mandate that insurers provide cyber insurance and ransomware coverage for the other associated losses (e.g., the cost of restoration). That should be backstopped by a significant reinsurance market. Given the reluctance of reinsurers to take on these risks, we discuss the potential benefits of a program akin to TRIP, under which the government would reinsure for catastrophic losses with a cost-sharing mechanism between the primary insurers and the government reinsurance program. If this program alone does not result in a drastic reduction in the cyber insurance gap, we could also consider a buyer-side cyber insurance mandate.