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 I. INTRODUCTION 

Personalized medicine, where Big Data meets Big Health, has 
been hailed as the next leap forward in health care, most recently in 
President Obama’s 2015 State of the Union address.1 It is already de­
veloping and spreading rapidly; doctors are using increasing amounts 
of personal information, including genetic diagnostic tests, to tailor 
treatments to individual patients.2 Humans and diseases are inherently 
variable in many dimensions, genomic and otherwise; as a result, 38% 
of patients with depression, 40% with asthma, and 75% with cancer 
fail to respond to treatment, belying the efficacy of a one­size­fits­all 
model of medicine.3 When medical science can determine what pre­
dicts which fraction of patients will respond to a particular treatment, 
that treatment can then be matched to the right patients. Personalized 
medicine — this tailoring of treatment — can save and extend lives 
by suggesting more effective treatments, and it can diminish the tre­
mendous cost and risk of unnecessary medical interventions.4 In addi­
tion to aiding patient care, personalized medicine can speed up and 

                                                                                                                  
1. See Francis S. Collins & Harold Varmus, A New Initiative on Precision Medicine, 372 

N. ENGL. J. MED. 793, 793–95 (2015) (describing President Obama’s “Precision Medicine 
Initiative”). Big Data here refers to the enterprise of using big data — that is, large da­
tasets — to find new information and patterns in various fields. See VIKTOR MAYER­
SCHÖNBERGER & KENNETH CUKIER, BIG DATA: A REVOLUTION THAT WILL TRANSFORM 

HOW WE LIVE, WORK, AND THINK (2013). For descriptions of personalized medicine in the 
medical literature, see Edward Abrahams & Mike Silver, The Case for Personalized Medi-
cine, 3 J. DIABETES SCI. & TECH. 680 (2009); Wylie Burke & Bruce M. Psaty, Personalized 
Medicine in the Era of Genomics, 298 J. AM. MED. ASS’N 1682 (2007); Isaac S. Chan & 
Geoffrey S. Ginsburg, Personalized Medicine: Progress and Promise, 12 ANN. REV. 
GENOMICS & HUM. GENETICS 217 (2011); Geoffrey S. Ginsburg & Jeanette J. McCarthy, 
Personalized Medicine: Revolutionizing Drug Discovery and Patient Care, 19 TRENDS 

BIOTECH. 491 (2001); and Margaret A. Hamburg & Francis S. Collins, The Path to Person-
alized Medicine, 363 NEW ENG. J. MED. 301 (2010). 

2. See Chan & Ginsburg, supra note 1, at 218. 
3. See Brian B. Spear et al., Clinical Application of Pharmacogenetics, 7 TRENDS 

MOLECULAR MED. 201, 201–02 (2001). 
4. Id. at 201. 
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streamline the process of drug discovery and clinical trials by identi­
fying which patients a developing drug is most likely to help.5 

But the version of personalized medicine being implemented to­
day — what I dub “explicit personalized medicine” — is just an entry 
point into the realm of what huge amounts of data can tell us about 
our health and how to improve it. Current versions of personalized 
medicine (and of health care in general) frequently rely on what we 
can explicitly understand: relatively simple relationships that can be 
identified and validated in clinical trials that group large numbers of 
patients for statistical power. But biology is complicated; many im­
portant relationships are not one­to­one, two­to­one, or even several­
to­one correspondences, but are instead networks among dozens of 
interacting variables, including those which are readily observable 
(e.g., age, weight, or sex) and those that are not (e.g., genomic mark­
ers or metabolite levels).6 

This Article introduces into legal scholarship the concept of 
black­box medicine, which I define as the use of opaque computation­
al models to make decisions related to health care. Black­box medi­
cine, pursued by geneticists, personalized medicine advocates, and 
other health care innovators, already does and increasingly will use 
the combination of large­scale high­quality datasets with sophisticated 
predictive algorithms to identify and use implicit, complex connec­
tions between multiple patient characteristics.7 A defining feature of 
black­box medicine is that those algorithms are non­transparent — 
that is, the relationships they capture cannot be explicitly understood, 
and sometimes cannot even be explicitly stated. Note that this type of 
medicine is “black­box” to everyone by nature of its development; it 
is not “black­box” because its workings are deliberately hidden from 
view.8 By capturing complex underlying biological relationships — 

                                                                                                                  
5. Lawrence J. Lesko et al., Pharmacogenetics and Pharmacogenomics in Drug Devel-

opment and Regulatory Decision Making: Report of the First FDA-PWG-PhRMA-DruSafe 
Workshop, 43 J. CLINICAL PHARMACOLOGY 342, 349 (2003). 

6. For instance, one recent technique used genetic sequence data from 5000 genes to clas­
sify two different types of lung tumor with very high accuracy; the two types of tumor re­
spond best to different therapies. Hojin Moon et al., Ensemble Methods for Classification of 
Patients for Personalized Medicine with High-Dimensional Data, 41 ARTIFICIAL 

INTELLIGENCE MED. 197, 198, 203–04 (2007). The same team’s efforts to predict distant 
metastasis of breast cancer tumors were less successful. Id. at 204–05. 

7. Amarasingham and colleagues describe one form of black­box medicine, “predictive 
analytics,” involving the use of real­time large datasets and predictive algorithms to help 
inform treatment decisions, such as who should be sent first to intensive care units. See 
Ruben Amarasingham et al., Implementing Electronic Health Care Predictive Analytics: 
Considerations and Challenges, 33 HEALTH AFF. 1148, 1148 (2014). Other forms of black­
box medicine, described below, relate to the choice of which drugs to give to patients, or 
complex interacting constellations of disease risk factors. See infra Part II.A.3. 

8. For an extensive treatment of algorithms that are deliberately hidden from view, see 
FRANK PASQUALE, THE BLACK BOX SOCIETY (2015). Such deliberately obscure algorithms 
are also used in personalized medicine by, for example, Assurex Health, but are not the 
subject of this Article. 
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and by potentially allowing their use with algorithmic validation ra­
ther than relying on clinical trials9 — black­box medicine opens far 
more possibilities for shaping treatment and drug development. Alt­
hough black­box medicine presents major challenges at conceptual, 
scientific, and legal levels, it also offers a faster path to medical ad­
vances that might otherwise lie many decades in the future.  

Costs and hurdles exist at each phase of black­box medicine’s de­
velopment. First, information must be gathered and vetted, which re­
quires financial resources and navigating legal requirements, 
including privacy and informed consent.10 Second, reliable and sensi­
tive algorithms must be developed, which requires dedicated effort by 
sophisticated programmers.11 Third, since complex implicit predic­
tions are much less amenable to the forms of validation on which we 
traditionally rely — scientific understanding, clinical trials, and post­
market surveillance — other forms of validation must be developed 
by the innovating firm, regulators, and/or third parties.12  

In addition to practical hurdles, black­box medicine raises policy 
concerns outside the realm of science and medicine. The first and 
most immediate concern is that development will require significant 
incentives beyond — or differently structured from — those offered 
by the market. Black­box medicine recapitulates the classic intellectu­
al property story in which firms underinvest in non­excludable infor­
mation goods because they cannot fully appropriate their value.13 
Black­box medicine relies principally on pure information goods: col­
lected data, patterns discovered within that data, and validation of 
those patterns. Intellectual property allows firms to exclude others 
from the information good and therefore appropriate a higher por­
tion — though not all — of the social welfare surplus created by in­
novation. However, the current intellectual property regime not only 
provides inadequate incentives for black­box medicine, the incentives 
it does provide push the field in counterproductive directions.  

Patents, the primary intellectual property driver of technological 
innovation, are a poor fit for black­box medicine. Patents are static 
where black­box medicine is dynamic, are slow to issue where black­
                                                                                                                  

9. Bypassing clinical trials in at least some instances is not as dramatic as it sounds. Cur­
rent practices in off­label drug use (uses for a drug not currently approved by the FDA) 
frequently involve treatment based on correlations, connections, and hypotheses without the 
backstop of well­controlled clinical trials. 

10. See infra Part III.A. 
11. See infra Part III.B. 
12. See infra Part III.C. 
13. See, e.g., Kenneth J. Arrow, Economic Welfare and the Allocation of Resources for 

Invention, in THE RATE AND DIRECTION OF INVENTIVE ACTIVITY: ECONOMIC & SOCIAL 

FACTORS 609, 619 (Univs.­Nat’l Bureau Comm. for Econ. Research ed., 1962) available at 
http://www.nber.org/chapters/c2144 (“To sum up, we expect a free enterprise economy to 
underinvest in invention and research (as compared with an ideal) because it is risky, be­
cause the product can be appropriated only to a limited extent, and because of increasing 
returns in use.”). 
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box medicine evolves rapidly, and demand full and precise disclosure 
where black­box medicine is inherently incapable of being fully dis­
closed.14 In addition to basic and longstanding structural concerns, 
which might at least be addressable, the Supreme Court has recently 
and sharply limited the categorical availability of patents for diagnos­
tic methods and algorithms.15 

Trade secrecy provides a parallel incentive for black­box medi­
cine development, but comes with its own complications. On the one 
hand, exclusivity based on trade secrecy fits well with algorithms that 
are inherently difficult or impossible to disclose. On the other hand, 
trade secrecy creates problems for cumulative innovation, especially 
with respect to datasets, and provides little to no incentive for efforts 
to validate the accuracy of an algorithm. Accordingly, better­tailored 
incentives, set for each stage of development, are needed to drive 
black­box medicine forward. 

A second major policy concern for black­box medicine involves 
privacy. The assembly of the datasets of health information needed to 
develop black­box medicine raises tremendous privacy concerns. Not 
only is inadvertent information release a possibility, but developing 
algorithms for black­box medicine would require that datasets be 
more than minimally available. Ideally, to fulfill an infrastructure role, 
datasets would be widely or publically available. Anonymization can 
address some concerns, but with increasing amounts of health data 
stored in a single record, even anonymized data can frequently be 
linked to known persons. Black­box medicine development and de­
ployment must also comply with the detailed requirements of the Pri­
vacy Rule of the Health Insurance Portability and Accountability Act 
(“HIPAA”).16  

Regulation is a third key policy concern of black­box medicine. 
Although the U.S. Food and Drug Administration (“FDA”) has long 
exercised enforcement discretion with respect to the type of laborato­
ry­developed tests that could make up much of black­box medicine, 
the agency has recently changed its stance, and intends to regulate 
such complex tests fully.17 The contours of FDA regulation — what 
sort of evidence will be required, how long the process will take, and 
crucially, whether clinical trials will be needed — will have a tremen­
dous impact on the shape of black­box medicine. The FDA also has 
the ability to facilitate the development of black­box medicine, for 
instance, by providing a stamp of approval — whether traditional 
formal approval as a medical device or through a novel adaptive certi­

                                                                                                                  
14. See infra Part IV.A.1. 
15. E.g., Mayo Collaborative Servs. v. Prometheus Labs., Inc., 566 U.S. ___, 132 S. Ct. 

1289, 1294 (2012); see infra notes 116–119 and accompanying text. 
16. Health Insurance Portability and Accountability Act of 1996, Pub. L. No. 104­191, 

110 Stat. 1936 (codified as amended in scattered sections of the U.S.C.). 
17. See infra Part IV.C. 
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fication procedure18 — to allay concerns about new technologies or 
by certifying third parties to validate black­box algorithms. 

Fourth and finally, at least for the purposes of this Article, policy 
surrounding black­box medicine must consider the challenges of 
commercialization. Adoption and potential insurance reimbursement 
of black­box medicine has implications for cost savings, treatment 
efficacy, and the equitable distribution of black­box medicine. Black­
box medicine will likely face real difficulties in entering common 
medical practice, a concern closely tied with the market­entry and 
validation procedures adopted by the FDA. Engagement from public 
health care payers has the potential to help solve this problem, both by 
leading the way for private insurers and by helping to demonstrate the 
efficacy of specific algorithms. 

This Article proceeds in three Parts. Part II describes personalized 
medicine and the differences between the current state of explicit per­
sonalized medicine and black­box medicine. Part III lays out the hur­
dles to the development of black­box medicine. Part IV discusses in 
brief the policy concerns of black­box medicine, addressing potential 
problems and suggesting policy interventions. 

II. A NEW CONCEPTION OF PERSONALIZED MEDICINE 

Personalized medicine represents a tremendous step forward for 
modern medicine. Doctors are already using increasing amounts of 
personal data, especially diagnostic genetic tests, to tailor treatments 
to the individual patient. These variations in treatment reflect the vari­
ation inherent among humans, and the connection between patient 
variability and a change in treatment is carefully examined, tested, 
and clinically validated. Personalized medicine has the potential to 
save and extend lives, to avoid unnecessary treatment, and to hasten 
and streamline the process of drug discovery, but can only use a lim­
ited set of relationships. With big data, we can use far more relation­
ships than the current version of personalized medicine. This Part 
describes the next phase of personalized medicine, which has received 
significant attention among genomic researchers19 and health technol­
ogy companies,20 but has gone largely unnoticed by legal scholars. 

                                                                                                                  
18. See infra Part IV.C.3. 
19. See generally, e.g., Amarasingham et al., supra note 7; Jesse Davis et al., Machine 

Learning for Personalized Medicine: Will This Drug Give Me a Heart Attack? (2008) (un­
published manuscript) (discussing preliminary work), http://www.ualberta.ca/~szepesva/ 
ICML2008Health/Davis.pdf; Xiaoqian Jiang et al., Calibrating Predictive Model Estimates 
to Support Personalized Medicine, 19 J. AM. MED. INFORMATICS ASS’N 263 (2012); and 
Moon et al., supra note 6. 

20. Companies working in this field include Enlitic, www.enlitic.com; Englue, 
www.englue.com; Knome, www.knome.com; Foundation Medicine, 
www.foundationmedicine.com; and 23andMe, www.23andme.com; and Illumina, 
www.illumina.com. 
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A. Revolution in Personalized Medicine 

Before turning to what is coming next, it is important to know the 
current state of the art. This Section describes the current version of 
personalized medicine — itself still developing and having a major 
impact on health care — and then addresses the changes coming in 
the shift to black­box medicine. It describes in turn three related ideas: 
(1) Personalized medicine, the most general idea, refers to the tailor­
ing of treatment based on the differing characteristics of individual 
patients,21 (2) Explicit personalized medicine, a subset of personalized 
medicine, refers to tailoring that is based on scientifically identified 
and understood relationships,22 and (3) Black­box medicine, a newly 
developing subset of personalized medicine, refers to tailoring based 
on relationships which are not understood and often not identified, 
relying instead on opaque computational algorithms.23 

1. What Is Personalized Medicine? 

While doctor­patient relationships have historically focused on 
the patient, and in that sense have long been personal, new advances 
in medical science under the name of personalized medicine have 
been heralded as revolutionary.24 Although there are many slightly 
varying definitions of personalized medicine, the heart of it is this: All 
patients are different, and treatment can and should be tailored to the 
individual patient to the extent possible. This Article adopts this broad 
definition of personalized medicine, though other definitions exist 
with contested and more specific meanings.25 

                                                                                                                  
21. See infra Part II.A.1. 
22. See infra Part II.A.2. 
23. See infra Part II.A.3. 
24. See generally A. Jamie Cuticchia, Existing Ethical Principles and Their Application 

to Personal Medicine, 2 OPEN ETHICS J. 29 (2008) (discussing the revolutionary expansion 
of pharmacogenomics after completion of the Human Genome Project); James P. Evans et 
al., Preparing for a Consumer-Driven Genomic Age, 363 NEW ENG. J. MED. 1099 (2010) 
(discussing personalized health care in the direct­to­consumer genetic testing context); Eric 
D. Green et al., Charting a Course for Genomic Medicine from Base Pairs to Bedside, 470 
NATURE 204 (2011) (discussing a vision for moving toward an era of genomic medicine); 
Hamburg & Collins, supra note 1 (discussing the hurdles in moving from concept to clinical 
use); FEINSTEIN KEAN HEALTHCARE & MIKE SILVER, PERSONALIZED MED. COAL., THE 

CASE FOR PERSONALIZED MEDICINE (2009), available at http://cllcanada.ca/2010/pdfs/ 
TheCaseforPersonalizedMedicine_5_5_09.pdf (discussing the benefits of personalized 
medicine and the necessary steps for widespread implementation). 

25. The President’s Council of Advisors on Science and Technology defines personalized 
medicine most closely to the broad version used here: “tailoring of medical treatment to the 
individual characteristics of each patient.” PRESIDENT’S COUNCIL OF ADVISORS ON SCI. & 

TECH., PRIORITIES FOR PERSONALIZED MEDICINE 1 (2008) [hereinafter PRIORITIES FOR 

PERSONALIZED MEDICINE]. The FDA defines personalized medicine more narrowly as 
getting obtaining “the best medical outcomes by choosing treatments that work well with a 
person’s genomic profile, or with certain characteristics in the person’s blood proteins or 
cell surface proteins,” Michelle Meadows, Genomics and Personalized Medicine, 39 FDA 
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Personalized medicine contrasts with a model of medicine based 

on traditional clinical trials. Requiring clinical trials to demonstrate 
drug efficacy has led to tremendous advances, identifying which 
drugs and treatments work, which do not, and which are better than 
others. However, clinical trials are typically designed to be broadly 
applicable across populations, so drugs are similarly approved broad­
ly, not for subpopulations.26 This approach develops strong scientific 
evidence of average treatment efficacy, but misses much of the varia­
tion among patients.27 

Personalized medicine aims to remedy this problem by identify­
ing scientific links between biological patient characteristics, diagno­
ses, and treatment options. It aims to allow physicians and patients to 
better choose treatment options in light of this. The analysis provides 
the ability to “classify individuals into subpopulations that differ in 

                                                                                                                  
CONSUMER MAG., Nov.–Dec. 2005, http://permanent.access.gpo.gov/lps1609/ 
www.fda.gov/fdac/features/2005/605_genomics.html; and the National Institutes of Health 
(“NIH”) more narrowly still as “an emerging practice of medicine that uses an individual’s 
genetic profile to guide decisions made in regard to the prevention, diagnosis, and treatment 
of disease.” U.S. Nat’l Library of Med., Nat’l Inst. of Health, Glossary, Glossary Definition 
of Personalized Medicine, GENETICS HOME REFERENCE (May 4, 2015), 
http://ghr.nlm.nih.gov/glossary=personalizedmedicine. For a criticism of equating personal­
ized medicine with genomic medicine, see Leigh Ann Simmons et al., Personalized Medi-
cine Is More than Genomic Medicine: Confusion over Terminology Impedes Progress 
Towards Personalized Healthcare, 9 PERSONALIZED MED. 85, 85–86 (2012). 

26. The majority of clinical trials have historically been conducted on undifferentiated 
patient bases, and most drugs are approved for broad use. See Mahvash Hussain­Gambles et 
al., Why Ethnic Minority Groups Are Under-Represented in Clinical Trials: A Review of the 
Literature, 12 HEALTH & SOCIAL CARE COMMUNITY 382, 382 (2004). This picture is 
changing; clinical trial guidelines have shifted to address these concerns and acknowledg 
the limitations of one­size­fits­all clinical trials. NIH Policy and Guidelines on the Inclusion 
of Women and Minorities as Subjects in Clinical Research, NAT’L INSTS. HEALTH, 
http://grants1.nih.gov/grants/funding/women_min/guidelines_amended_10_2001.htm (last 
updated Oct. 1, 2001) (“[W]omen and members of minority groups and their subpopulations 
must be included in all NIH­funded clinical research, unless a clear and compelling ra­
tionale and justification establishes . . . that inclusion is inappropriate with respect to the 
health of the subjects or the purpose of the research.”); see also National Institutes of Health 
Revitalization Act of 1993, Pub. L. No. 103­43, § 492 B(a)(1), 107 Stat. 122, 133–35 
(1993). These efforts have met with only moderate success; a 2011 FDA study found that 
many clinical study populations had over 90% of patients that self­identified as white. FDA, 
COLLECTION, ANALYSIS, AND AVAILABILITY OF DEMOGRAPHIC SUBGROUP DATA FOR 

FDA­APPROVED MEDICAL PRODUCTS 20 tbl.1­3 (2013), available at 
http://www.fda.gov/downloads/regulatoryinformation/legislation/federalfooddrugandcosmet
icactfdcact/significantamendmentstothefdcact/fdasia/ucm365544.pdf. Population differenti­
ation sometimes occurs; the combination drug BiDil, for instance, was approved by the 
FDA in 2005 to treat congestive heart failure in black patients, Press Release, Food & Drug 
Admin., FDA Approves BiDil Heart Failure Drug for Black Patients (June 23, 2005), avail-
able at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2005/ucm108445 
.htm, though that decision has generated its own controversy. See, e.g., Howard Brody & 
Linda M. Hunt, BiDil: Assessing a Race-Based Pharmaceutical, 4 ANNALS FAM. MED. 556, 
557–59 (2006); Susan M. Wolf, Debating the Use of Racial and Ethnic Categories in Re-
search, 34 J.L. MED. & ETHICS 483, 484–86 (2006). 

27. See P. M. Rothwell, Can Overall Results of Clinical Trials Be Applied to All Pa-
tients?, 345 LANCET 1616, 1617–18 (1995). 
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their susceptibility to a particular disease or their response to a specif­
ic treatment.”28 

Personalized medicine offers substantial benefits. It can lower 
costs and improve the efficiency of the healthcare system,29 allowing 
doctors to provide better diagnoses and more effective treatments.30 In 
addition, the pharmaceutical and biotechnology industries can focus 
drug development efforts on subpopulations who have the same criti­
cal genetic variants.31 A treatment paradigm that acknowledges the 
variants’ role in treatment and disease (although the molecular path­
ways need not be fully understood) should lead to better health out­
comes, compared to treating all patients with the same disease in the 
same way.32 

2. Explicit Personalized Medicine 

The form of personalized medicine described briefly above is the 
standard model. However, to differentiate this current form from what 
is on the horizon — and what is described below — I call it “explicit 
personalized medicine.” Explicit personalized medicine relies on sci­
entific and clinical research to identify and explain relatively simple 
biological relationships between measurable characteristics of an in­
dividual patient and likely medical outcomes for that patient. “Explic­
it” refers to the fact that these relationships are explicitly identified 
and validated; that is, we know why treatment is tailored in a specific 
way for a specific individual.  

Explicit personalized medicine uses relationships between several 
types of biomarkers and medical responses to determine diagnoses 
and treatment plans.33 Frequently, these biomarkers are genomic vari­
ations, and genetic diagnostic tests are correspondingly the most ex­
plored version of explicit personalized medicine. However, other sets 
of biomarkers — different “­omics” — are also used in explicit per­
sonalized medicine, including measurements of RNA transcription 
levels (transcriptomics), the presence and level of various proteins 
(proteomics), levels of non­protein small metabolic molecules 
(metabolomics), and the presence of DNA modifications that affect 
gene expression levels (epigenomics).34 These and other biomarkers 

                                                                                                                  
28. PRIORITIES FOR PERSONALIZED MEDICINE, supra note 25, at 1. 
29. Personalized medicine offers the chance to reduce care costs by avoiding wasted 

treatments, avoiding adverse reactions, and improving health status more quickly. In addi­
tion, personalized medicine’s stratification of patients can reduce the “size, duration, and 
cost” of clinical trials. Id. 

30. Id. 
31. See Ginsburg & McCarthy, supra note 1, at 494. 
32. Id. at 495.  
33. See, e.g., Chan & Ginsburg, supra note 1, at 219–20. 
34. Id. at 222–24. 



428  Harvard Journal of Law & Technology [Vol. 28 
 

can also help direct treatments of patients or improve the drug devel­
opment process. 

Explicit personalized medicine is already used to calibrate treat­
ment options. One prominent example is the anticoagulant drug war­
farin, which can lead to heavy bleeding if used at an improper dosage. 
Some patients metabolize the drug faster, and some slower; an aver­
age dose may cause overdose in a slow­metabolizer, while the same 
amount may be ineffective in a fast­metabolizer.35 Earlier dosing reg­
imens relied on trial and error combined with some easily measurable 
patient characteristics such as age, weight, and sex. Recently, howev­
er, researchers discovered that two proteins are particularly relevant in 
warfarin metabolism: the cytochrome P450 enzyme CYP2C9, which 
metabolizes warfarin, and the vitamin K epoxide reductase gene 
VKORC1.36 These proteins come in different forms, which work less 
or more efficiently, and genetic tests can determine which version a 
particular patient has. Now, warfarin dosing can be determined after 
genetic testing, with more accurate results than the prior regime.37 
Warfarin is just one example; similar tests can improve drug response 
and reduce side effects in schizophrenia patients.38  

Diagnostic testing can identify not only patient characteristics but 
also the nature of a disease itself. In oncology, genetic tests can de­
termine the specific variant of a cancer and consequently, how best to 
attack it.39 The monoclonal antibody Herceptin (trastuzumab) exem­
plifies this approach: Some breast cancer patients who overexpress the 

                                                                                                                  
35. U. I. Schwarz, Clinical Relevance of Genetic Polymorphisms in the Human CYP2C9 

Gene, 33 EUR. J. CLINICAL INVESTIGATION 23, 28 (2003). 
36. Chan & Ginsburg, supra note 1, at 227. 
37. Id. at 220, 227. The information used to provide warfarin dosing information is col­

lected at www.warfarindosing.org. According to the website, the calculator uses “clinical 
factors and (when available) genotypes of two genes: cytochrome P450 2C9 (CYP2C9) and 
vitamin K epoxide reductase (VKORC1).” WARFARIN DOSING, 
http://www.warfarindosing.org (last visited May 9, 2015) (emphasis omitted). Recommen­
dations are based on data from a cohort of over 1000 patients, and the information used for 
the calculator can explain 53% of the variation in response to warfarin doses. Id. For clinical 
trials evaluating the efficacy of using genotype to guide warfarin dosing over standard pro­
tocols, see generally, for example, Jeffrey L. Anderson et al., Randomized Trial of Geno-
type-Guided Versus Standard Warfarin Dosing in Patients Initiating Oral Anticoagulation, 
116 CIRCULATION 2563 (2007); Y. Caraco, S. Blotnick & M. Muszkat, CYP2C9 Genotype-
Guided Warfarin Prescribing Enhances the Efficacy and Safety of Anticoagulation: A Pro-
spective Randomized Controlled Study, 83 CLINICAL PHARMACOLOGY & THERAPEUTICS 
460 (2008); and P. A. Lenzini et al., Laboratory and Clinical Outcomes of Pharmacogenetic 
vs. Clinical Protocols for Warfarin Initiation in Orthopedic Patients, 6 J. THROMBOSIS & 

HAEMOSTASIS 1655 (2008). 
38. Sven Cichon et al., Pharmacogenetics of Schizophrenia, 97 AM. J. MED. 

GENETICS 98, 98–99 (2000) (describing relevant variants of genes encoding cytochrome 
P450 enzymes CYP2D6, CYP2C19, and CYP2C9). 

39. See John C. Mansour & Roderich E. Schwarz, Molecular Mechanisms for Individual-
ized Cancer Care, 207 J. AM. C. SURGEONS 250, 250–54 (2008).  
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HER2/neu receptor can usefully be treated with Herceptin,40 while in 
other breast cancer patients, the side effects of the drug outweigh any 
benefits.41 

Explicit personalized medicine also offers promising improve­
ments to conducting clinical trials leading to drug approval. If only 
certain genetically identified participants in smaller Phase I or Phase 
II clinical trials respond to an investigational drug, larger and more 
expensive Phase III trials can focus on individuals with that geno­
type.42 This approach can potentially lower the expense of the trial 
and generate a more focused indication and label much earlier in the 
process.43  

Explicit personalized medicine offers significant potential to im­
prove treatment and the development of new drugs. But because ex­
plicit personalized medicine relies on scientific research and clinical 
trials to identify and validate relationships, it is limited to the relative­
ly simple relationships that are amenable to these approaches. Unfor­
tunately, this leaves untapped many complex — but still important — 
biological relationships. Those complex relationships, however, may 
be exploited even without explicit identification. Black­box medicine 
combines large datasets and sophisticated algorithms to make predic­
tions and improve treatments, without explaining or even identifying 
the underlying complex relationships. 

3. Implicit Personalized Medicine: Black­Box Medicine 

Black­box medicine is the next stage of personalized medicine.44 
It differs from explicit personalized medicine in three principal ways. 
First, the information used to develop the relationships and predic­
tions used in treatment recommendations comes from a much larger, 
broader set of information.45 Second, a large, rich dataset and machine 
learning techniques enable many predictions based on complex con­
                                                                                                                  

40. Walter P. Carney, HER2/neu Status Is an Important Biomarker in Guiding Personal-
ized HER2/neu Therapy, 9 CONNECTION 25, 27 (2006). 

41. Melinda L. Telli et al., Trastuzumab-Related Cardiotoxicity: Calling into Question 
the Concept of Reversibility, 25 J. CLINICAL ONCOLOGY 3525, 3531 (2007). 

42. Ginsburg & McCarthy, supra note 1, at 492. Phase I and II clinical trials can also po­
tentially be targeted to identified subpopulations, though that requires knowing beforehand 
which populations are likely to be most responsive. See FDA, U.S. DEP’T HEALTH & HUM. 
SERVS., GUIDANCE FOR INDUSTRY: CLINICAL PHARMACOGENOMICS: PREMARKET 

EVALUATION IN EARLY­PHASE CLINICAL STUDIES AND RECOMMENDATIONS FOR LABELING 
13–19 (Jan. 2013), available at http://www.fda.gov/downloads/drugs/guidancecompliance 
regulatoryinformation/guidances/ucm337169.pdf [hereinafter GUIDANCE FOR INDUSTRY]. 

43. Ginsburg & McCarthy, supra note 1, at 493. The FDA has issued guidance on the use 
of pharmacogenomic data in the context of clinical trial development, and trials increasingly 
include such data. GUIDANCE FOR INDUSTRY, supra note 42, at 13–19. 

44. See, e.g., Amarasingham et al., supra note 7, at 1153; I. Glenn Cohen et al., The Le-
gal and Ethical Concerns that Arise from Using Complex Predictive Analytics in Health 
Care, 33 HEALTH AFF. 1139, 1140–41 (2014); Jiang et al., supra note 19, at 263. 

45. See infra Part II.A.3.a. 
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nections between patient characteristics and expected treatment results 
without explicitly identifying or understanding those connections.46 
For example, as opposed to the relatively simple links described 
above, a black­box medicine prediction might be that patients who 
have a set of linked variations in a dozen different genes, smoke, and 
have middling­high blood pressure might predictably respond better 
to one medication than another — even if those factors could not be 
explained or even explicitly identified.47 Third, and discussed in more 
detail below, the relationships used are generally not susceptible to 
confirmation through clinical trials. This means that different methods 
of validation will be needed, but also that the costly and time­
consuming process of clinical trials may be avoided.48 

a. Big Data 

Far more health data is collected today than ever before, and that 
collection continues to increase rapidly. Data is collected for several 
reasons, including improving patient care, documenting care to ward 
off malpractice threats, increasing the efficiency of care, and keeping 
records to support insurance and payment claims. 

The tremendous growth of recorded data has been facilitated by 
the gradual transition to electronic health records (“EHRs”), which 
store health data in electronic form rather than on paper charts.49 

                                                                                                                  
46. See infra Part II.A.3.b. 
47. In some sense, black­box medicine seems to be a throwback to traditional reliance on 

the experience and intuition of doctors: “I’ve tried this on patients like you before and it’s 
worked, so that’s what I’ll recommend for you.” Inasmuch as both this model and black­box 
medicine rely on implicit links, the analogy is apt. However, black­box medicine relies on 
far broader sets of information in making connections, and will involve quantitative valida­
tion of those models in a fashion atypical of physician experience or intuition­based treat­
ment. 

48. See infra Part III.C. 
49. The terms electronic medical record (“EMR”) and electronic patient record (“EPR”) 

are also used, frequently interchangeably. The differences between them, such as they are, 
are largely not important for this Article. The growth in EHRs is attributable to several 
factors, a system of penalties and incentives as part of the Health Information for Economic 
and Clinical Health (HITECH) Act, enacted as Title XIII of Division A and Title IV of 
Division B of the American Recovery and Reinvestment Act of 2009, Pub. L. No. 111­5, 
§§ 13001–13424, 123 Stat. 115, 226–79 (codified as amended in scattered sections of the 
U.S. Code), and other potential cost savings. See Dwight C. Evans et al., Effect of the Im-
plementation of an Enterprise-Wide Electronic Health Record on Productivity in the Veter-
ans Health Administration, 1 HEALTH ECON. POL’Y & L. 163, 168–69 (2006); Richard 
Hillestad et al., Can Electronic Medical Record Systems Transform Health Care? Potential 
Health Benefits, Savings, and Costs, 24 HEALTH AFF. 1103, 1103–04 (2005). Improved 
patient care — another motivation for adopting EHRs, see Jeffrey A. Linder et al., Electron-
ic Health Record Use and the Quality of Ambulatory Care in the United States, 167 
ARCHIVES INTERNAL MED. 1400, 1400 (2007) — has received mixed reviews, with some 
finding no substantial improvement, see Ashly D. Black et al., The Impact of eHealth on the 
Quality and Safety of Health Care: A Systematic Overview, 8 PUB. LIBR. OF SCI. MED. 1, 12 

(Jan. 18, 2011), http://www.plosmedicine.org/article/fetchObject.action?uri=info:doi/ 
10.1371/journal.pmed.1000387&representation=PDF; Max J. Romano & Randall S. Staf­
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EHRs not only have capacity to record more data, they are also more 
readily accessible and can be combined into larger databases more 
easily than scattered paper patient records. 

The types and volume of data collected and included in EHRs are 
also ballooning. Genetic testing for single­nucleotide polymorphisms, 
which measures some genetic variation, is now inexpensive,50 and 
whole­genome sequencing continues to drop in price and to approach 
widespread clinical use.51 Other “­omics” technologies, such as the 
testing of large panels of metabolites, gene expression levels, and pro­
tein levels, are similarly becoming more accessible.52 Each new type 
of patient measurement creates large amounts of data that can be cap­
tured in EHRs and linked to patient health outcomes. 

All of this data can be used to understand and improve the prac­
tice of medicine (after overcoming substantial hurdles, discussed be­
low53). Indeed, providers and health care firms already use this data to 
improve efficiency and patient outcomes.54 But beyond the relatively 
simple links that can be explicitly labeled and understood,55 many 
complex relationships are impossible to observe or use without a dif­
ferent set of algorithmic tools. 

                                                                                                                  
ford, Electronic Health Records and Clinical Decision Support Systems: Impact on National 
Ambulatory Care Quality, 171 ARCHIVES INTERNAL MED. 897, 897 (2011); and others 
observing some improvement, see Randall D. Cebul et al., Electronic Health Records and 
Quality of Diabetes Care, 365 NEW ENG. J. MED. 825, 830 (2011). 

50. David B. Agus, The Outrageous Cost of a Gene Test, N.Y. TIMES, (May 20, 2013), 
http://www.nytimes.com/2013/05/21/opinion/the­outrageous­cost­of­a­gene­test.html (de­
scribing the high cost of the BRCA1/2 test as a patent­based outlier and noting the low costs 
of most other genetic tests). 

51. Stories of imminent whole­genome sequencing for under $1000 have existed for 
years without fruition. See Simon T. Bennett et al., Toward the $1000 Human Genome, 6 
PHARMACOGENOMICS 373, 375, 381 (2005); Erika Check Hayden, Is the $1,000 Genome 
for Real?, NATURE (Jan. 15, 2014), http://www.nature.com/news/is­the­1­000­genome­for­
real­1.14530; John A. Robertson, The $1000 Genome: Ethical and Legal Issues in Whole 
Genome Sequencing of Individuals, 3 AM. J. BIOETHICS 35, 35 (2003). However, the costs 
have been dropping at a rapid rate. See Kris Wetterstrand, DNA Sequencing Costs: Data 
from the NHGRI Genome Sequencing Program (GSP), NIH: NAT’L HUM. GENOME RES. 
INST., www.genome.gov/sequencingcosts (last updated Oct. 31, 2014). Quality concerns 
also exist; as of 2014, using whole­genome sequencing as a common clinical tool, one must 
cope with high false­negative rates. See generally Frederick E. Dewey et al., Clinical Inter-
pretation and Implications of Whole-Genome Sequencing, 311 J. AM. MED. ASS’N 1035 
(2014). 

52. Chan & Ginsburg, supra note 1, at 233–34. 
53. See infra Part III. 
54. See infra Part II.B. 
55. This is not to denigrate explicit modeling, or to understate the tremendous effort 

needed to develop those models, the knowledge benefit that comes from developing them, 
or their potential benefits for patients and the health care system. I intend rather to point to a 
different form of analysis, which opens many additional possibilities. 
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b. Black-Box Algorithms 

To discover new complex relationships, black­box medicine re­
lies on computer systems that improve their performance over time by 
trying a certain solution, evaluating the outcome, and then modifying 
that solution accordingly to improve future outcomes.56 For familiar 
examples to illustrate the novel features of this approach, consider the 
music service Pandora and the video service Netflix, both of which 
make recommendations to their users. 

Pandora relies on a technique called content­based filtering that is 
simpler and resembles the current practice of personalized medicine.57 
This technique uses discrete characteristics about an object and 
knowledge about the user’s relationship to those characteristics to 
make recommendations. In the music service Pandora, experts charac­
terize songs based on a set of explicit criteria, such as major versus 
minor key or the presence of vocals.58 When a customer selects a 
song, Pandora identifies the traits of that song and suggests other 
songs that share those traits.59 In the medical context, content­based 
filtering closely tracks the explicit science­based paradigm of modern 
medicine. If a patient presents with fever and cough and tests positive 
for strep throat, a doctor would likely prescribe an antibiotic to treat 
the likely strep infection. Content­based filtering requires a relatively 
small set of information — in this case, a positive test for strep might 
be enough — but can only make recommendations based on already 
known explicit links to that information. 

Netflix, on the other hand, uses a technique called collaborative 
filtering, which is more complex and more closely resembles black­
box medicine. Collaborative filtering uses information groups of simi­
lar users to construct an underlying predictive model and makes rec­
ommendations based on that model. Using this approach, Netflix 
predicts which movies a user might like based on a customer’s ratings 
of watched movies and by comparing that set of data to similar data 
from other customers. This allows predictions without any explicit 
knowledge; for instance, it might be true that the vast majority of peo­
ple who liked Notting Hill, Casino Royale, and the television show 
Dr. Who turn out to like the cult foodie film Tampopo. Someone who 
likes the first three would be offered Tampopo as a recommendation, 

                                                                                                                  
56. See generally Davis et al., supra note 19. This approach is frequently referred to as 

“machine learning.” Id. For a general overview of the field, see PETER FLACH, MACHINE 

LEARNING: THE ART AND SCIENCE OF ALGORITHMS THAT MAKE SENSE OF DATA (2012).  
57. See generally Pasquale Lops et al., Content-Based Recommender Systems: State of 

the Art and Trends, in RECOMMENDER SYSTEMS HANDBOOK 73 (F. Ricci et al. eds., 2011). 
58. About the Music Genome Project, PANDORA, http://www.pandora.com/about/mgp 

(last visited May 9, 2015). 
59. See Rob Walker, The Song Decoders, N.Y. TIMES, (Oct. 14, 2009), 

http://www.nytimes.com/2009/10/18/magazine/18Pandora­t.html. 
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despite the lack of any clear or identified link. In the medical context, 
data might reveal, for example, that male patients diagnosed with 
schizophrenia, who have several specific genetic markers and are be­
tween the ages of twenty­two and twenty­seven, might respond signif­
icantly better to cognitive behavioral therapy when combined with 
low doses of caffeine. Why? The model couldn’t tell us — though it 
might suggest that research into the mechanism might eventually be 
of interest — but it could suggest treatment contours in a way previ­
ously unavailable.60 This lack of transparency is the “black­box” of 
black­box medicine. 

The opacity of black­box medicine can come in roughly two 
forms: literal and practical. First, more literal opacity exists when the 
relationships are totally hidden, even though the machine learning 
process is known. A human analogy may make this clearer: Consider 
a radiologist with decades of experience interpreting magnetic reso­
nance images (“MRIs”). Given an MRI, the radiologist may be able to 
look at an ambiguous shadow and say whether it reflects an artifact of 
the image, something benign, or a potentially dangerous tumor; at the 
same time, she may be unable to articulate the internal algorithm she 
uses to make that determination. Her experience has taught her to rec­
ognize a set of true underlying relationships between an image and the 
implicit biology, but those relationships cannot be explicitly stated.61 
Machine learning techniques can have the same sort of opacity. Arti­
ficial neural networks, for instance, involve “hidden layers” of com­
putational facsimiles of human neurons; the network trains on a set of 
observations, learns to classify observations, and then is considered 
fully “trained.”62 Once trained, the network can take an observation 

                                                                                                                  
60. It is worth noting that informal versions of comparison­based recommendations are 

currently in use, though they are not typically well­regarded under the modern medical 
paradigm. Sites such as patientslikeme.com, where patients describe symptoms and success­
ful treatments, essentially show collaborative filtering in action. These sites frequently pre­
sent these treatments without any specific scientific basis for the treatment choice or its 
success, or quantitative or algorithmic analysis, and generally with much less data. Also 
note that purely retrospective data analyses come with a significant set of issues, including 
the possibilities of overspecification, latent variables, endogeneity problems, and other 
complexities. Anup Malani and colleagues, among others, have described these problems in 
the context of FDA approval for drugs based on post­hoc subgroup analysis. Anup Malani et 
al., Reforming Subgroup Analysis 6–8 (Apr. 13, 2008) (unpublished manuscript), available 
at http://papers.ssrn.com/abstract=1119970. Reliable black­box medicine would need to 
compensate for these issues, as does any primarily data­mining approach; Malani and col­
leagues suggest, as does this Article, that independent third­party validation may help coun­
teract some problems of post­hoc analysis. Id. at 13–16. 

61. For theoretical and empirical descriptions of implicit knowledge in medicine, see 
generally, David R. Kaufman et al., Conceptual Knowledge and Decision Strategies in 
Relation to Hypercholesterolemia and Coronary Heart Disease, 55 INT’L J. MED. 
INFORMATICS 159 (1999); Vimla L. Patel et al., Expertise and Tacit Knowledge in Medi-
cine, in TACIT KNOWLEDGE IN PROFESSIONAL PRACTICE 75 (Robert J. Sternberg & Joseph 
A. Horvath eds., 1999). 

62. See Turgay Ayer et al., Breast Cancer Risk Estimation with Artificial Neural Net-
works Revisited: Discrimination and Calibration, 116 CANCER 3310, 3316–19 (2010) 



434  Harvard Journal of Law & Technology [Vol. 28 
 

and classify it — for instance, whether an image likely shows a tumor 
or not — but the mechanism of that classification remains opaque to 
everyone, including the initial programmer.63  

The second, more approachable opacity represents something of a 
midpoint between fully opaque black­box medicine and explicit per­
sonalized medicine. In this form, a machine­learning algorithm can 
examine data, determine a relationship, and state it, but the underlying 
biological relationship is too complex to be amenable to scientific 
understanding or clinical trials. A set of relationships between fifty 
different parameters, for instance, might well predict a significant 
medical outcome, but a complex fifty­dimensional relationship is be­
yond the reach of current science. Some machine learning approaches 
follow this pattern: A “random forest” approach can take a large num­
ber of parameters and use them to classify observations via a large set 
of decision trees with controlled variation.64 At the end of the learning 
period, the output includes the weight and relationships of the parame­
ters involved in the final model.65 Under these approaches, the rela­
tionship may not be fully and formally opaque — one can list the 
factors and their relationships — but they are so complex as to defy 
understanding, and are therefore practically opaque and still “black­
box.”  

Different forms of algorithmic medicine can be imagined to lie 
somewhere on a spectrum of transparency and understanding. At one 
end is the classical model of a well­understood, well­validated, sup­
ported­by­extensive­evidence biological relationship: transparent to 
doctors, scientists, and ideally patients. At the other end is a fully 
opaque model derived from non­transparent processes, able to make 
predictions but closed to explicit understanding. In the middle is some 
combination, perhaps where some parts of the algorithm are hidden 
and others are transparent, or where some aspects are understandable, 
but others are too complex to be understood.  

B. The Benefits of Black-Box Medicine 

Black­box medicine has the potential to bring tremendous bene­
fits to the practice of medicine and to the health care system more 
generally. As with explicit personalized medicine, these benefits fall 

                                                                                                                  
(comparing performance of an artificial neural network against that of experienced radiolo­
gists in classifying the risk of breast cancer; the network outperformed the radiologists). 

63. Id. at 3318. 
64. See, e.g., Katherine R. Gray et al., Random Forest-Based Similarity Measures for 

Multi-Modal Classification of Alzheimer’s Disease, 65 NEUROIMAGE 167, 169, 171 (2013) 
(describing random forest algorithms, noting the possibility of extracting the component 
parameters in the resulting model, and using random forest techniques to classify Alz­
heimer’s Disease based on parameters including clinical data, images, and genetic infor­
mation). 

65. Id. at 169–71. 
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into two linked main categories: improving patient care and increasing 
possibilities of drug discovery or drug repurposing. 

1. Patient Care 

Black­box personalized medicine is key to realizing the next­
generation health benefits of genomics, electronic health records, and 
big data in the health care sector. Currently, we are amassing patient 
data, but are only able to use a relatively small fraction of the relation­
ships reflected in that data because of the sheer complexity of biologi­
cal systems.66 Black­box medicine promises to make at least some of 
that complexity available for medical purposes, as described above.67 
New complex relationships can be used to suggest different treatment 
options and to fine­tune provider responses and treatments which are 
already in use. Black­box medicine can also potentially provide not 
only new treatment recommendations, but also diagnoses or preven­
tive recommendations based on individual patient data. More specific 
predictions are harder to make, since black­box medicine by defini­
tion focuses on complex and implicit links. A look at aspects of cur­
rent practice which are closest to black­box medicine offers some 
suggestions. In particular, the major benefits that have arisen from 
increased understanding of warfarin dosing, using individualized pre­
dictors to avoid a trial­and­error approach, are suggestive of how 
black­box medicine could improve other drug treatments. Black­box 
medicine might be especially helpful for other drugs with narrow 
therapeutic indices, such as warfarin.68 In addition, black­box medi­
cine promises to improve care indirectly through its impact on drug 
development and use. 

2. Drug Discovery and Development 

Black­box personalized medicine can help resolve a major chal­
lenge facing the drug industry: When can already­approved drugs be 
prescribed or used for a new purpose? It is extremely costly to devel­
op new drugs. A significant portion of that cost goes to ensuring basic 
safety and administrability, and a larger fraction goes to demonstrat­

                                                                                                                  
66. See supra Part II.B.1. 
67. See supra Part II.A.3. 
68. A drug’s therapeutic index measures the range within which the drug is effective; 

higher doses are likely to have toxic effects, and lower doses are likely to be ineffective. In 
instances where the therapeutic index is relatively narrow and is also impacted by patient 
characteristics — like warfarin — black­box medicine is particularly likely to offer useful 
guidance. See generally Maureen Burns, Management of Narrow Therapeutic Index Drugs, 
7 J. THROMBOSIS & THROMBOLYSIS 137 (1999). Although the number of narrow therapeu­
tic index drugs is not large, they are used for a variety of clinical purposes. Id. at 137. 
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ing efficacy through clinical trials.69 Therefore, there is a substantial 
advantage to discovering new uses for old drugs,70 especially since 
most drugs have multiple uses.71 Finding a new use avoids repeated 
costs in demonstrating safety but still requires costly clinical trials to 
demonstrate efficacy. Recouping these costs is hard because patents 
and regulatory exclusivity tend not to protect new uses effectively.72 

Black­box medicine offers potentially less expensive routes to 
discover and confirm the efficacy of new uses. The wealth of data 
available in electronic health records of patients suffering from differ­
ent ailments and responding to drugs they take for other purposes may 
be mined by big­data algorithms, which can suggest new uses. Black­
box medicine would broaden the already­widespread concept of off­
label use (that is, use not approved by the FDA)73 beyond those based 
on practitioner experience or limited clinical trials.74 In the black­box 
medicine paradigm, useful links need only be correct, not explicit or 
extensively validated in clinical trials; this could facilitate the off­
label use of drugs which are approved as safe but not approved — and 
which may never be approved — for the algorithmically­suggested 
purpose. 

Black­box medicine has other potential benefits for drug discov­
ery and development. To the extent that black­box medicine identifies 
relationships between complex sets of variables that are largely im­
plicit, black­box medicine suggests potential new research pathways 

                                                                                                                  
69. Joseph A. DiMasi & Henry G. Grabowski, The Cost of Biopharmaceutical R&D: Is 

Biotech Different?, 28 MANAGERIAL & DECISION ECON. 469, 477 (2007) (finding average 
cash outlay per new biopharmaceutical of $198 million for preclinical work and $361 mil­
lion for clinical trials). 

70. At least in part because many drugs are relatively crudely targeted, they typically 
have multiple effects on the human body. The simplest example is the existence of side 
effects. Better­validated multiple effects enter clinical practice as off­label use; for instance, 
many of the drugs used in chemotherapy have not been regulator­approved for that use, and 
some such uses have never even been the subject of clinical trials. See Rena M. Conti et al., 
Prevalence of Off-Label Use and Spending in 2010 Among Patent-Protected Chemothera-
pies in a Population-Based Cohort of Medical Oncologists, 31 J. CLINICAL ONCOLOGY 
1134, 1137 (2013) (finding a 30% rate of off­label use among ten common patent­protected 
intravenous chemotherapies). 

71. See Benjamin N. Roin, Solving the Problem of New Uses, MICH. ST. L. REV. (forth­
coming 2014) (manuscript at 19–20, 43–44), available at http://papers.ssrn.com/sol3/ 
papers.cfm?abstract_id=2337821. 

72. Rebecca S. Eisenberg, The Problem of New Uses, 5 YALE J. HEALTH POL’Y L. & 

ETHICS 717, 724–35 (2005) (finding patents and regulatory efforts ineffective at incentiviz­
ing new use clinical trials). 

73. See, e.g., Conti et al., supra note 70, at 1134. 
74. The best­validated multiple effects of drugs come when pharmaceutical firms decide 

the limited protection available for new uses is worth the cost and effort of undertaking full 
clinical trials and acquiring regulatory approval for those uses. Profits available on market­
ing older drugs for new uses may provide an end­stage incentive that drives the creation of 
earlier innovations needed to get there; such incentives could potentially drive the develop­
ment of black­box medicine used to discover those new uses. However, those incentives are 
attenuated by the difficulty in enforcing patents on new uses. See Eisenberg, supra note 72, 
at 725–30. 
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to make those implicit connections explicit. Finally, black­box medi­
cine could also aid discovery of new drugs, or clinical validation of 
secondary uses for old drugs, by targeting clinical trials. Explicit per­
sonalized medicine and pharmacogenomic testing generally can al­
ready be used to streamline clinical trials.75 Black­box medicine could 
further expand these possibilities by suggesting participant popula­
tions that meet a more complex set of criteria for as of yet unknown 
reasons. In addition, black­box medicine could more radically reduce 
the cost of clinical trials by avoiding more of them, especially in the 
context of off­label uses for already­approved drugs as described 
above.  

III. HURDLES TO DEVELOPMENT 

While black­box medicine offers large benefits, getting there will 
not be easy. Developing complex predictive models requires the on­
going generation and consolidation of very large datasets about indi­
viduals and their health. This requires significant costs in the 
collection of data — both from digital sources such as EHRs and, 
more expensively, from paper­filed records located in widely dis­
persed doctors’ offices. Genetic sequence data collection will be re­
quired to complement and inform collected health records. Once the 
datasets are gathered, the development of accurate predictive and ana­
lytical algorithms is expensive. Finally, validating those algorithms — 
whether through independent testing, repeats on separate datasets, or 
clinical validation — will require additional funds and effort. 

A. Data Collection and Coding 

Black­box medicine requires large sets of high­quality health data 
to find the complex relationships. Notably, some firms have already 
amassed significant health information databases, but these are tradi­
tionally aimed either directly at immediate care or at insurance reim­
bursement, and lack many types of data necessary for black­box 
medicine development.76 Generating large datasets suitable for black­

                                                                                                                  
75. See, e.g., Brian M. Alexander et al., Biomarker-Based Adaptive Trials for Patients 

with Glioblastoma — Lessons from I-SPY 2, 15 NEURO­ONCOLOGY 972, 973–75 (2013) 
(describing adaptive neuro­oncology clinical trials where the trials were dynamically modi­
fied based on preliminary results and biomarker associations). 

76. See, e.g., Madelyn Kearns, Returning Patients to Data Aggregation, MED. PRAC. 
INSIDER (May 10, 2013), http://www.medicalpracticeinsider.com/news/patient­care/ 
panelists­propose­puttingpatients­back­center­data­aggregation (“The healthcare industry is 
still very much in the pubescent stages of data management and storage — experimenting 
with its new data capture proficiencies and what the general breadth of digital medical in­
formation means for care delivery.”). One of the largest and best­known health data aggre­
gators is IMS Health. The data from IMS Health is deidentified, strictly proprietary, and 
extremely expensive. 
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box medicine presents a significant practical challenge: Gathering, 
cleaning, and assembling high­quality health information from many 
different sources is an expensive endeavor. Once data is actually gath­
ered, it must then be checked for quality and “cleaned” of unreliable 
observations,77 and then put into compatible formats for a unified da­
tabase. The hardware costs of actually possessing and storing large 
amounts of data are low, but energy, maintenance, and management 
software increase those costs.78 The health data necessary to fill data­
bases for black­box medicine will come from two different sources: 
EHRs and paper health records. Each raises different challenges. 

Collecting electronic information should theoretically be much 
less expensive because it does not require encoding new data. This 
does not mean that collecting electronic information is cheap or free; 
many health records are kept in incompatible data formats, and the 
information tracked varies both in type and how it is recorded. The 
practical challenges with assembling paper health records are very 
high — likely higher — and of a different nature. Paper records are 
scattered throughout healthcare facilities, from doctors’ offices to 
hospitals.79 Once located, information must be encoded to electronic 
format, either by hand or by optical character recognition.80 One re­
sponse is to begin with electronic health information and proceed later 
to paper records, though this may lead to the absence of older, longer­
term data and population selection effects. Either type of data may 
require recoding descriptive variables (e.g., “high,” “overweight”) 
into standardized variables for use in further analysis. 

Practical challenges with data gathering are compounded by the 
complex and ideally comprehensive nature of the data being gathered. 
More data leads to greater capacity to tease apart complex implicit 
relationships. Thus, an ideal database might include not only typical 
physical measurements (e.g., blood pressure, heart rate, height, 
weight, and symptoms), but also medications being taken (both over­
the­counter and prescription, including frequency and duration) and 
genetic information. As other new technologies such as metabolite 
screens, RNA expression profiles, and other biomarker sets become 
more readily available and are gradually adopted by practitioners, 

                                                                                                                  
77. For instance, if a patient’s weight in pounds is recorded over six months as 121, 119, 

1200, and 119, the third observation is clearly a typographical error and should be corrected 
or removed. 

78. Paul P. Tallon, Corporate Governance of Big Data: Perspectives on Value, Risk, and 
Cost, 46 COMPUTER 32, 34 (2013). 

79. Roy Schoenberg & Charles Safran, Internet Based Repository of Medical Records 
That Retains Patient Confidentiality, 321 BMJ 1199, 1199 (2000). 

80. See Diane Dolezel & Jackie Moczygemba, Implementing EHRs: An Exploratory 
Study to Examine Current Practices in Migrating Physician Practice, PERSP. HEALTH INFO. 
MGMT., Winter 2015, at 2, 13 (discussing challenges of adding paper records to EHRs, and 
finding in a small sample of Texas physicians that only 50% of practices imported the entire 
legacy paper record). 
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they will contribute additional data. Finally, the practical challenges 
of data collection are amplified by legal restrictions, discussed be­
low.81 

B. Developing Predictive Algorithms 

The second set of challenges lies in the actual generation of pre­
dictive algorithms for black­box medicine, that is, the task of parsing 
the data, identifying correlations, and making sure those correlations 
suggest real and useful health measures. While predictive algorithms 
have become increasingly sophisticated, they still require extensive 
development and specialization to adapt them to particular contexts 
and specific concerns.  

To take a recent example of the complexity in developing predic­
tive algorithms, consider the Netflix Prize competition.82 Netflix’s 
movie recommendation algorithm is a core part of Netflix’s business. 
Netflix developed its own predictive algorithm,83 sought to harness 
outside expertise, and in 2006 offered a $1,000,000 prize for a team 
which could beat the performance of its in­house algorithm by 10%.84 
Over 20,000 teams registered.85 Three years and tens of thousands of 
submissions later, Netflix awarded the prize to a team consisting of 
several researchers from different institutions — after three years of 
work, they had improved Netflix’s performance by 10.06%.86 The 
winning algorithm involved dozens of separate collaborative filtering 
algorithms87 and the training of one hundred parallel predictors with 
results blended through eleven different computational methods. De­
spite the technology available, and the simplicity of the dataset, the 
team still ran into substantial computational limitations.88 

                                                                                                                  
81. See infra Part IV.B (discussing privacy issues in data collection). 
82. See Netflix Prize, NETFLIX, http://www.netflixprize.com (last visited May 9, 2015). 
83. Netflix’s original algorithm, Cinematch, used “[s]traightforward statistical linear 

models with a lot of data conditioning.” Frequently Asked Questions, NETFLIX, 
http://www.netflixprize.com/faq (last visited May 9, 2015). This model provides only 10% 
better prediction of user scores than a trivial algorithm which predicted as the user score the 
average score the movie had received from other users. Id. 

84. Linyuan Lü et al., Recommender Systems, 519 PHYSICS REP. 1, 3 (2012). 
85. Id. 
86. Prizemaster, Comment to Grand Prize Awarded to Team BellKor’s Pragmatic Chaos, 

NETFLIX (Sept. 18, 2009, 9:58:04 AM), http://www.netflixprize.com/community/ 
viewtopic.php?id=1537. Notably, the first place team submitted their results just twenty­
four minutes before the conclusion of the contest. Id. 

87. See YEHUDA KOREN, THE BELLKOR SOLUTION TO THE NETFLIX GRAND PRIZE, 
NETFLIX 1 (Aug. 2009), available at http://www.netflixprize.com/assets/GrandPrize2009_ 
BPC_BellKor.pdf; ANDREAS TÖSCHER ET AL., THE BIGCHAOS SOLUTION TO THE NETFLIX 

GRAND PRIZE, NETFLIX 6–16 (Sept. 5, 2009), available at http://www.netflixprize.com/ 
assets/GrandPrize2009_BPC_BigChaos.pdf. 

88. TÖSCHER ET AL., supra note 87, at 3, 9, 15, 17 (some machine learning algorithms 
could be run only a limited number of times because of limitations in memory, processing 
power, and storage). 
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The experience of Netflix also demonstrates the extraordinary 

complexity of algorithm development and how it requires close and 
careful involvement from sophisticated programmers. The Netflix 
dataset was almost laughably simple compared to that necessary for 
personalized medicine — while it involved data from a substantial 
480,189 users on 17,770 movies (for a total of 100,480,507 ratings), 
the ratings were simple one to five integer scores.89 Health infor­
mation databases would involve potentially thousands of relevant var­
iables, as described above.90 The stakes and error costs are higher, but 
the potential rewards are much higher as well; U.S. health care ex­
penditures are over 17% of GDP, for a 2013 total of approximately 
$2.9 trillion.91 Overall, substantial — but socially worthwhile — in­
vestment will be required to develop meaningful black­box medicine 
algorithms. 

C. Validating Predictive Algorithms 

The third challenge in developing black­box medicine is valida­
tion; that is, making sure that the algorithmic models developed by 
firms are accurate and useful. For typical new treatment methods — 
whether drugs or otherwise, validation comes in several possible 
forms. First, the treatment is generally scientifically understood.92 
Second, clinical trials are used to demonstrate the validity of a treat­
ment method. Third and finally, the validity of the treatment can be 
confirmed by actors other than the sponsoring company, including by 
other clinical trials (e.g., conducted by health agencies) or by post­

                                                                                                                  
89. Id. at 1. In fact, even with a far simpler dataset, Netflix never ended up implementing 

the winning solution, finding that “the additional accuracy gains . . . did not seem to justify 
the engineering effort needed to bring them into a production environment.” Xavier Ama­
triain & Justin Basilico, Netflix Recommendations: Beyond the 5 Stars (Part 1), NETFLIX 

TECH BLOG (Apr. 6, 2012, 6:30 PM), http://techblog.netflix.com/2012/04/netflix­
recommendations­beyond­5­stars.html. Netflix did end up implementing some simpler 
solutions developed earlier in the competition. Id. 

90. See supra note 70 and accompanying text. 
91. U.S. CENTERS FOR MEDICARE AND MEDICAID SERVICES, NATIONAL HEALTH 

EXPENDITURE 2013 HIGHLIGHTS, (2013), available at http://www.cms.gov/Research­
Statistics­Data­and­Systems/Statistics­Trends­and­Reports/NationalHealthExpendData/ 
Downloads/highlights.pdf. 

92. Although the mechanism of action for a drug is normally understood, there are nota­
ble exceptions. For instance, lithium, used to treat mood disorders, has an unknown mecha­
nism of action. Gin S. Malhi et al., Potential Mechanisms of Action of Lithium in Bipolar 
Disorder: Current Understanding, 27 CNS DRUGS 135, 136 (2013). Similarly, although 
aspirin has been commonly available since the beginning of the twentieth century, its mech­
anism of action was only discovered in 1971. See generally J.R. Vane, Inhibition of Prosta-
glandin Synthesis as a Mechanism of Action for Aspirin-Like Drugs, 231 NATURE NEW 

BIOLOGY 232 (1971). 
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marketing surveillance mechanisms and the experience of clinicians 
prescribing the drug.93 

The complex and implicit models at the heart of black­box medi­
cine face challenges at each of these stages. First, the opaque nature of 
the algorithms means that they cannot be well understood on a scien­
tific level. Typical clinical trials are also likely to be challenging for 
two reasons: The implicit and complex relationships of black­box 
medicine are unlikely to be susceptible to mechanistic exploration by 
classic gold­standard clinical trial methodology,94 and some of the 
principal benefits of black­box medicine — potentially higher speed 
and relatively low cost of specialized treatment recommendations — 
rely on avoiding a slow and costly clinical trial process.95 

This reality increases the need for external validation of black­
box medicine algorithms based on independent algorithmic validation 
of the same or independent data.96 There are two principal concerns, 
roughly equivalent to the well­trodden concepts of analytical and clin­
ical validity in diagnostic testing. First, a model may not predict what 
it says it does.97 Second, and more specific to black­box medicine, a 
model may predict what it aims to, but for reasons based on idiosyn­
crasies of the dataset or overspecification rather than true biological 
phenomena.98 

Model validation could be performed by the initial innovator or 
the FDA, but each has problems. The initial innovator faces strong 
financial incentives not to disprove its own algorithm once marketed 
and retains whatever biases or errors may have created problems in 
the first place.99 Regulatory oversight could serve some validation 

                                                                                                                  
93. Timothy Brewer & Graham A. Colditz, Postmarketing Surveillance and Adverse 

Drug Reactions: Current Perspectives and Future Needs, 281 J. AM. MED. ASS’N. 824, 828 
(1999). 

94. Because personalized medicine relies on very specific patient profiles, it is hard to 
aggregate similar patients. The expectation of different results among different patients runs 
counter to the average treatment effects observed in randomized clinical trials. 

95. Firms could, and likely should, run broad clinical trials on black­box medicine algo­
rithms overall; that is, does a group of patients treated according to algorithm X have signif­
icantly better clinical outcomes, in general, than patients treated according to the standard of 
care? But this broad form of clinical trial shows some overall validation for the full complex 
algorithm set, not for any particular treatment option. 

96. See, e.g., James D. Brenton et al., Molecular Classification and Molecular Forecast-
ing of Breast Cancer: Ready for Clinical Application?, 23 J. CLINICAL ONCOLOGY 7350, 
7359 (2005). 

97. See Brian B. Spear et al., Clinical Application of Pharmacogenetics, 7 TRENDS 

MOLECULAR MED. 201, 204 (2001). Into this category fall the most basic form of errors: 
errors in the coding of the program (“bugs”), corrupt or flawed data, and other such chal­
lenges. These problems’ mundane nature does not diminish their importance. Like in other 
places in the health care system, simple and mundane errors can have tremendous and costly 
consequences. 

98. Id. at 202–03 (discussing clinical validity). 
99. While the initial innovator has reputational incentives to ensure a high­quality prod­

uct, as well as duties under tort law, prior experiences with drug company behavior shows 
that reputational and tort incentives cannot ensure uniform validation and disclosure of 
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role, but the FDA currently lacks the expertise and resources to inde­
pendently replicate a company’s algorithmic results; at most, it could 
provide procedural oversight — ensuring that the data collection, con­
solidation, and analysis methods are appropriate. 

Validation by private third parties could better ensure the clinical 
relevance of an algorithm.100 Agreement between different firms, us­
ing different computational methods, on recommended treatment op­
tions would go a long way to demonstrate that those implicit 
correlations are medically valid and not merely artifacts of the dataset 
or the specific choices of the algorithm developers.101 Because such 
validation will also be expensive, policy regarding personalized medi­
cine should also consider incentives for third­party validation.102 Fi­
nally, post­market surveillance and provider experience can also help 
bolster the case for an algorithm’s overall efficacy, but these rely on 
the wide deployment of the algorithm in the first place. 

IV. POLICY CONCERNS AND CHALLENGES OF BLACK­BOX 

MEDICINE 

Black­box medicine presents powerful possibilities for the future 
of medicine, including decreasing the costs and increasing the quality 
of medical care. It also has implications far outside the realm of medi­
cine and science. Strong policy choices can facilitate the development, 
spread, and use of black­box medicine; similarly, poor policy choices 
can profoundly stunt its growth. A full exploration of the legal and 
policy aspects of black­box medicine will take substantial study. This 
Part briefly lays out some of the most important concerns and chal­
lenges.  

                                                                                                                  
problems. In the most high­profile example, Merck failed to disclose information about 
risks of its blockbuster drug Vioxx for years, resulting in nearly 30,000 tort claims amid an 
estimated 88,000 to 140,000 excess cases of serious heart disease in the United States. Da­
vid J. Graham et al., Risk of Acute Myocardial Infarction and Sudden Cardiac Death in 
Patients Treated with Cyclo-Oxygenase 2 Selective and Non-Selective Non-Steroidal Anti-
Inflammatory Drugs: Nested Case-Control Study, 365 LANCET 475, 480 (2005); Harlan 
Krumholz et al., What Have We Learnt from Vioxx?, 334 BMJ 120, 120 (2007). Thus, while 
validation by the initial innovator is important and should be demonstrated — especially in 
the regulatory context — it is unlikely to suffice. 

100. See Cohen et al., supra note 44, at 1143; Anup Malani et al., supra note 60, at 3. To 
some extent, noncommercial third parties — primarily foundations and academic research­
ers — can validate black­box medicine models in the same way that they currently check 
some drug trials. But that current role is quite limited; the resources necessary to conduct 
independent clinical trials are significant, and even performing reanalysis of clinical trial 
data requires time, money, and expertise. 

101. See, e.g., Brenton et al., supra note 96, at 7359 (proposing independent algorithmic 
validation of algorithms to predict breast cancer classifiers). Developing independent algo­
rithms would clearly increase overall development costs, but by a substantially lower 
amount since the cost of developing data need not be replicated. 

102. See infra Part IV.A.3.c. 
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A. Incentives 

As described above, developing black­box medicine will require 
significant investment in assembling datasets, creating algorithms, and 
validating those algorithms. However, those investments all create 
information goods, which face an excludability problem: Once infor­
mation is developed, keeping others from using that information is 
difficult. This non­excludability problem is a central justification for 
intellectual property.103 Society benefits from innovation, but ideas 
and information are often expensive to produce and hard to protect. If 
firms cannot capture most of the value of their innovation invest­
ments, they will invest at suboptimal levels from a social­welfare 
standpoint.104 Given the large spillover effects of innovation, encour­
aging it typically constitutes a worthy policy goal.105 Intellectual 
property helps resolve this problem by allowing firms to exclude oth­
ers from the use of their information goods, thereby increasing incen­
tives to create those goods in the first place.106 This Section briefly 
describes the incentive landscape for black­box medicine.  

1. Problems with Patent Incentives 

Incentives for biomedical innovation, including black­box medi­
cine, arise primarily from the patent system, but such incentives are 
both inadequate and socially perverse. On the one hand, incentives are 
frequently inadequate; patents are difficult to obtain for black­box 
medicine, both generally and due to recent Supreme Court decisions 
regarding patentable subject matter.107 On the other hand, those incen­

                                                                                                                  
103. See generally, e.g., Colloquium, Ex Ante Versus Ex Post Justifications for Intellec-

tual Property, 71 U. CHI. L. REV. 129 (2004). 
104. See, e.g., Benjamin N. Roin, Unpatentable Drugs and the Standards of Patentabil-

ity, 87 TEX. L. REV. 503, 507–08 (2009). 
105. Id. at 556. 
106. Id. at 508. This is not to argue that intellectual property does a perfect job of creat­

ing incentives, nor that these incentives come without costs; intellectual property is criti­
cized for creating deadweight loss due to monopoly pricing, Kenneth J. Arrow, supra note 
13, at 616–17, for distorting innovation incentives, Michael B. Abramowicz, The Danger of 
Underdeveloped Patent Prospects, 92 CORNELL L. REV. 1065, 1066–73 (2007), for creating 
large transaction costs, Peter S. Menell & Suzanne Scotchmer, Intellectual Property Law, in 
2 HANDBOOK OF LAW AND ECONOMICS 1473, 1505 (A. Mitchell Polinksy & Steven Shavell 
eds., 2007), and — especially in the field of health — for sharply curtailing access to medi­
cal treatments for the poor and for those in the developing world, Aidan Hollis & Thomas 
Pogge, INCENTIVES FOR GLOBAL HEALTH, THE HEALTH IMPACT FUND: MAKING NEW 

MEDICINES ACCESSIBLE FOR ALL 1, 109 (2008). This Article does not address these con­
cerns, taking instead as a given that biomedical innovation is an area in which intellectual 
property incentives are widely deployed on the policy level. Black­box medicine is an area 
in which the class justifications for intellectual property incentives apply, and therefore this 
Article will comment on the shape and magnitude of those incentives, not whether such 
incentives should exist at all. 

107. See, e.g., Mayo Collaborative Servs. v. Prometheus Labs., 566 U.S. ___, 132 S. Ct. 
1289, 1293 (2012). 
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tives that do exist drive black­box medicine in socially problematic 
directions. 

The patent system is a principal policy tool used to drive techno­
logical innovation. Inventions that are novel, nonobvious, and use­
ful108 are eligible for patent protection, under which the patentee has 
the right to exclude others from making, using, and selling109 the pa­
tented invention for twenty years from the date of the patent applica­
tion.110 This grant of an exclusive right creates ex ante incentives for 
the investment needed to develop the invention in the first place. 
While they may have benefits for driving innovation generally,111 pa­
tents function quite poorly in the context of creating incentives for 
black­box medicine for two key reasons: first, difficulty meeting the 
written description requirement, and second, issues with patent eligi­
bility.112 

First, patent law requires that patents include a detailed written 
description of the invention sufficient to enable a person having ordi­
nary skill in the art to practice the invention.113 Black­box medicine, 
by its nature, includes nontransparent elements frequently impossible 
to describe fully.114 

Second, the Supreme Court has created substantial limits on what 
broad categories of inventions are patent­eligible under § 101, and 
these limitations make obtaining patents on black­box medicine even 
more challenging. Although the language of § 101 embraces the vast 
majority of inventions,115 the Supreme Court has created three judicial 
exceptions: “Laws of nature, natural phenomena, and abstract ideas 

                                                                                                                  
108. 35 U.S.C. §§ 101–03 (2012). 
109. 35 U.S.C. § 271(a) (2012). The patentee can also exclude others from importing or 

offering to sell the invention. Id. Another set of other infringing actions can be found in 35 
U.S.C. § 271(2) (2012). 

110. 35 U.S.C. § 154(a)(2) (2012). 
111. Substantial debate exists about the success of patents in driving innovation general­

ly. For an excellent summary of this debate, see Lisa Larrimore Ouellette, Patent Experi-
mentalism, 101 VA. L. REV. (forthcoming 2015). Nevertheless, the life sciences, and 
especially in pharmaceutical research and development, are generally seen as an area where 
patent law functions relatively well. See, e.g., W. Nicholson Price II, Making Do in Making 
Drugs: Innovation Policy and Pharmaceutical Manufacturing, 55 B.C. L. REV. 491, 524–25 
(2014). 

112. There are also potential problems with matching the timing of patent issuance and 
duration to the development of personalized medicine, but those interactions are complex 
and also depend on, among other things, yet­to­be­determined regulatory pathways. See 
infra Part IV.C; see also Benjamin N. Roin, The Case for Tailoring Patent Awards Based 
on Time-to-Market, 61 UCLA L. REV. 672, 693–98 (2014). 

113. 35 U.S.C. § 112(a) (2012). 
114. See supra Part II.A.3.b. 
115. 35 U.S.C. § 101 (2012) (patents may be obtained on “any new and useful process, 

machine, manufacture, or composition of matter, or any new and useful improvement there­
of”); see also Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980) (internal citations omit­
ted) (“Congress intended statutory subject matter to ‘include anything under the sun that is 
made by man.’”). 
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are not patentable.”116 Patents on black­box medicine bump up against 
potentially all of these prohibitions. Under Gottschalk v. Benson, pure 
algorithms are unpatentable as abstract ideas.117 Under Mayo v. Pro-
metheus, this prohibition extends explicitly to medical diagnostic pro­
cesses, which the court held to be unpatentable laws of nature.118 
Finally, though less directly, in Association for Molecular Pathology 
v. Myriad Genetics, the Supreme Court held that isolated DNA is a 
natural phenomenon and therefore unpatentable, casting doubt on the 
strategy of using patents on natural biomarkers to buttress the protec­
tion of diagnostics relying on those biomarkers.119  

Patent incentives are not only lower for black­box medicine than 
for other biomedical innovations, those incentives that are available 
push the development of black­box medicine in unhelpful directions. 
After Mayo and Alice, successful patenting of algorithms requires 
significantly more than just the algorithm itself, which will likely be 
held to be either a law of nature or an abstract idea. The most straight­
forward way to add that “something more” is to focus on companion 
diagnostics and paired devices, rather than pure algorithms and data. 
The combination of a specific drug or treatment with a diagnostic al­
gorithm, approved and sold as a single package, is more likely patent­
able than a broader­purpose algorithm standing alone. Accordingly, 
innovators on the margin may turn away from the implicit, complex 
algorithms of black­box medicine and instead focus on simpler, more 
explicit relationships that can be tied to a physical product or pro­

                                                                                                                  
116. Mayo Collaborative Servs. v. Prometheus Labs., 566 U.S. ___, 132 S. Ct. 1289, 

1293 (2012) (internal quotation marks omitted) (recognizing the long history of these judi­
cial exceptions). 

117. Gottschalk v. Benson, 409 U.S. 64, 71–74 (1972). The invention in Gottschalk was 
an algorithm for converting between different forms of binary numbers; the Supreme Court 
held the invention was an unpatentable abstract idea because it would preempt all uses of 
the algorithm. Id. at 71–72. Software and algorithm patents evolved after Gottschalk to 
include language requiring the addition of a computer or storage media associated with the 
program; the Supreme Court held in 2014 that those mere additions were insufficient to 
make an algorithm patentable subject matter under § 101. See, e.g., Alice Corp. Pty. v. CLS 
Bank Int’l, 573 U.S. ___, 134 S. Ct. 2347, 2358–60 (2014). 

118. The algorithm in Mayo disclosed a method of treatment that comprised of adminis­
tering a thiopurine drug and then measuring the level of that drug’s metabolite. Measure­
ments above a certain threshold indicated that the dose was too high, while measurements 
below a certain threshold indicated that the dose was too low; the crux of the invention was 
the determination of those previously unknown levels. Mayo Collaborative v. Prometheus 
Labs., 566 U.S. ___, 132 S. Ct. 1289, 1295 (2012). This type of straightforward dose ad­
justment that is based on individual metabolism is a clear example of explicit personalized 
medicine. For further discussion, see generally Timo Minssen & David Nilsson, The US 
Supreme Court in Mayo v Prometheus — Taking the Fire from or to Biotechnology and 
Personalized Medicine?, 2 QUEEN MARY J. INTELL. PROP. 376 (2012). 

119. Ass’n for Molecular Pathology v. Myriad, 569 U.S. ___, 133 S. Ct. 2107, 2120 
(2013). Though patents on biomarkers (biological or biochemical markers with medical 
implications) do not themselves provide direct incentives for black­box medicine, exclusive 
rights to a particular set of new biomarkers, such as alleles of a gene, could restrict competi­
tion for algorithms that use those biomarkers. Such a strategy will typically be foreclosed 
after Myriad. 
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cess.120 Overall, patent incentives for black­box medicine are prob­
lematic. The unavailability of many patents lowers incentives general­
ly, and those that do exist push development away from black­box 
algorithms and toward simpler explicit companion diagnostics. 

2. Secrecy 

Secrecy is a key alternative to the patent system; if patents are 
unavailable, inventors can attempt to appropriate the returns from in­
novation by keeping the innovation secret. Secrecy has complex ef­
fects on incentives for black­box medicine. On the one hand, it 
matches extremely well with inherently nontransparent algorithms. 
On the other hand, keeping disclosable details hidden may result in 
challenges to trust and adoption, and secrecy about datasets and vali­
dation may sharply reduce the value of each, especially with regard to 
cumulative innovation. Lack of transparency may also make it more 
difficult or costly to obtain permission to use data. 

Knowledge which is reasonably kept secret and which derives in­
dependent economic value from its secrecy is protected from misap­
propriation by state and federal trade secret law.121 Trade secrecy can 
protect information that is unpatentable, and lasts as long as the in­
formation is secret.122 However, secret information can legally be re­
verse­engineered.123 

Secrecy seems exceptionally suitable for the algorithms driving 
black­box medicine. The algorithms are by definition nontransparent 
(otherwise they would be explicit personalized medicine, not black­
box medicine). The problem created by an inability to disclose, which 
creates problems for patent law, fully enables and even requires secre­
cy. 

                                                                                                                  
120. For instance, the drug Herceptin and the diagnostic test for HER2/neu gene expres­

sion were developed together and are provided together. See supra notes 39–41 and accom­
panying text; see also Personalized Medicine and Companion Diagnostics Go Hand-in-
Hand, FDA (July 31, 2014) http://www.fda.gov/ForConsumers/ConsumerUpdates/ 
ucm407328.htm. If the tied product is itself protected by patent or regulatory exclusivity, 
the linked diagnostic can benefit from that protection, even if protection is unavailable for 
the diagnostic itself. 

121. For a general overview of trade secrecy law, see Robert G. Bone, A New Look at 
Trade Secret Law: Doctrine in Search of Justification, CALIF. L. REV. 241, 247–51 (1998). 
Forty­seven states have enacted some form of the Uniform Trade Secrets Act; the excep­
tions are New York, North Carolina, and Massachusetts. Unif. Law Comm’n, LEGISLATIVE 

FACT SHEET — TRADE SECRETS ACT (last amended 1985), available at 
http://www.uniformlaws.org/LegislativeFactSheet.aspx?title=Trade%20Secrets%20Act. 
Under federal law, the Economic Espionage Act of 1996 makes the theft or misappropria­
tion of a trade secret a federal crime, so long as it relates to foreign or interstate commerce. 
18 U.S.C. § 1832 (2012). 

122. See Bone, A New Look, supra note 121, at 248. 
123. See RESTATEMENT (THIRD) OF UNFAIR COMPETITION § 43 cmt. b (1995) (listing re­

verse engineering as a proper means of acquiring a trade secret). 
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Secrecy, however, is a problematic incentive for the datasets un­

derpinning the development of black­box medicine and makes method 
validation impossible. Datasets can certainly be kept secret, and that 
approach has demonstrated substantial success. A notable example is 
Myriad Genetics. Myriad’s gene­testing process reveals combinations 
of alleles present in patients; the company then offers free testing to 
family members and analyzes family variation to determine signifi­
cantly linked genetic patterns.124 Since Myriad has a substantially 
greater set of data on BRCA1/2 variants, only 3% of its samples have 
variants of unknown significance;125 for competitors, roughly 20% to 
30% of samples have variants of unknown significance.126 Test sam­
ples sent to Myriad are therefore much less likely to be returned to the 
physician as “uninterpretable” than samples sent to their competi­
tors,127 providing a robust competitive advantage. After its loss in the 
Supreme Court, the company has sought to keep other information 
about genetic variation secret.128 While Myriad’s data advantage 
could be overcome as other firms slowly assemble their own data­
bases, the fact that Myriad currently possesses a much larger data­
base — amassed from its period of patent protection — is self­
reinforcing.129 Myriad can provide more results and is therefore likely 
to continue receiving more test samples; the resulting larger database 
would still be kept as a trade secret.130 Myriad’s business plan in­
cludes retaining and expanding this secrecy­based advantage of muta­
tion data and algorithms.131 

Among other concerns,132 keeping data secret in this area may 
significantly hamper the development of black­box medicine. Secrecy 

                                                                                                                  
124. In a genetic test like Myriad’s, the physical process first determines which alleles of 

a gene the patient has. That identification must then be interpreted to convey useful medical 
information: Are the alleles associated with a higher or a lower risk of cancer, or with no 
change? When the interpreting entity lacks sufficient information about a particular allele to 
provide a useful interpretation, it is termed a “variant of unknown significance,” and that 
part of the test is inconclusive. See Douglas F. Easton et al., A Systematic Genetic Assess-
ment of 1,433 Sequence Variants of Unknown Clinical Significance in the BRCA1 and 
BRCA2 Breast Cancer-Predisposition Genes, 81 AM. J. HUM. GENETICS 873, 873 (2007). 

125. Monya Baker, Policy Paper: Myriad Turns Cancer Genetic Data into Trade Se-
crets, NATURE NEWS BLOG (Oct. 31, 2012, 11:14 PM BST), http://blogs.nature.com/news/ 
2012/10/policy­paper­myriad­turns­cancer­genetic­data­into­trade­secrets.html. 

126. Id. 
127. Id. 
128. Barbara J. Evans, Economic Regulation of Next-Generation Sequencing, 42 J.L. 

MED. & ETHICS (SYMPOSIUM: SPECIAL SUPPLEMENT) 51, 52–53 (2014). 
129. Id. at 59–60.  
130. Id. at 62.  
131. MYRIAD GENETICS, INC., UNITED STATES SECURITIES AND EXCHANGE 

COMMISSION FORM 10­K (Fiscal Year 2013), available at http://files.shareholder.com/ 
downloads/MYGN/3108552224x0xS1193125­13­334245/899923/filing.pdf. 

132. Keeping data proprietary raises several potential concerns. On the ethical side, the 
Chairwoman of the European Society of Human Genetics’ Professional and Public Policy 
Committee described herself as “very concerned that such important data is being withheld 
from those who most need it.” Press Release, Eur. Soc’y of Human Genetics, Privately 
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slows cumulative innovation and promotes duplicative investment — 
though of course it also encourages ex ante investment.133 For data 
underlying black­box medicine, predictive ability increases with da­
taset size and variety; this “big data” nature is what enables the dis­
covery of complex correlations. When datasets shrink and are 
fragmented into firm­specific and disease­specific silos, fewer rela­
tionships are available, and those which can be found are less robust. 
Thus, while in other areas duplicative investment is merely wasteful, 
in the field of black­box medicine, keeping data fragmented prohibits 
the benefits of scale and has a correspondingly greater negative im­
pact on development. 

Finally, trade secrecy offers little incentive for the process of al­
gorithm validation. Ensuring that someone else’s algorithm functions 
as intended requires transparency; the validation must be disclosed to 
some combination of the original innovator, the regulator, the medical 
profession, and/or the public. While the value of validation is indeed 
difficult to appropriate, trade secrecy does not solve that problem. 

3. Potential New Incentives 

The incentive problem for black­box medicine — including the 
complex backdrop of secrecy and patent law — lacks a simple solu­
tion. This Section lays out a selection of possibilities for improve­
ment. Rather than addressing black­box medicine as a single problem, 
each stage of black­box medicine development — database assembly, 
algorithm generation, and validation — may be most amenable to a 
different form of incentive.134  

                                                                                                                  
Owned Genetic Databases May Hinder Diagnosis and Bar the Way to the Arrival of Person­
alised Medicine: ESHG Reacts to Today’s Report in the European Journal of Human Genet­
ics (Oct. 31, 2012) available at https://www.eshg.org/13.0.html. She suggested that 
“[p]olicymakers take an urgent look at the regulatory and reimbursement issues involved in 
genomic testing in order for all the data that is essential to understanding the clinical signifi­
cance of [mutations] to be made public, to the benefit of patients and healthcare providers 
alike.” Id. Others have noted that keeping data proprietary removes them from the potential 
of peer review and makes us less certain of their accuracy. Baker, supra note 125. Other 
concerns arise with respect to transparency, oversight, and the blocking of future research 
directions. 

133. See Bone, A New Look, supra note 121, at 266–67; Robert G. Bone, The (Still) 
Shaky Foundations of Trade Secret Law, 92 TEX. L. REV. 1803, 1807–08 (2014). For a 
defense of treating trade secrecy as intellectual property, see generally Mark A. Lemley, The 
Surprising Virtues of Treating Trade Secrets as IP Rights, 61 STAN. L. REV. 311 (2008). 

134. Of course, there are incentive spillovers between phases of development, as with all 
complex projects. With drugs, for instance, separate incentives are not needed for conduct­
ing preclinical trials because the tremendous impact of incentives from patent­protected 
monopoly (or oligopoly) profits on the final drug product are sufficient to drive the entire 
enterprise. However, incentives may target specific types of information development. For 
example, FDA­administered market exclusivity for new drug uses provides an incentive for 
firms to conduct additional clinical trials for that new use even after the drug is approved 
and already on the market. See Rebecca S. Eisenberg, The Role of the FDA in Innovation 
Policy, 13 MICH. TELECOMM. & TECH. L. REV. 345, 359–60 (2007). Similarly, while there 
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a. Data 

The most costly stage to developing black­box medicine is likely 
to be collecting, processing, and aggregating health data, as described 
above.135 This stage also faces problematic incentives: patents are 
unavailable to mere collections of data,136 and trade secrecy — which 
does allow appropriability of data — creates significant barriers to 
cumulative innovation.137 In a best­case scenario, firms face incen­
tives to engage in wasteful duplicative efforts to redevelop broad da­
tasets.138 In more likely but more problematic scenarios, firms face 
incentives to either develop their own special­purpose data in substan­
tive silos (as Myriad Genetics139 and others are already doing) or to 
avoid developing data to pursue black­box medicine at all. Data col­
lection and processing thus demands additional incentives. 

Dataset incentives could come in at least three forms. The first 
and simplest would be a grant model, where the government offers 
funding for dataset generation; grant funding might be conditioned on 
public access to the dataset.140 While this fits into a traditional incen­
tive scheme and thus might be more readily implemented, the magni­
tude of government involvement might be politically unpalatable. 

The second form of data incentives, borrowing from the European 
model, would be to implement a sui generis system of intellectual 
property protection for datasets, thus allowing appropriation of the 
dataset­created welfare surplus without tinkering with other intellec­
tual property regimes.141 Since the costs of an intellectual property 

                                                                                                                  
may be spillover incentives in black­box medicine — protected exclusivity for algorithms 
could drive database generation — each phase nonetheless merits separate consideration due 
to its different function and the different identity of the relevant innovator. Databases can 
support a plethora of algorithms by various developers, while validation, as discussed 
above, should ideally come from parties independent of those developing the algorithms in 
the first place. See supra Part III.C. 

135. See supra Part III.A (describing data collection). 
136. 35 U.S.C. § 101 (2012). 
137. See supra note 132 and accompanying text. 
138. For treatment review of other trade secret problems related to big data, see generally 

Michael Mattioli, Disclosing Big Data, 99 MINN. L. REV. 535 (2014) (discussing how inad­
equate disclosure of big­data collection, organization, and transformation practices can limit 
use and reuse of that data). 

139. See supra Part IV.A.2. 
140. In a parallel situation, the NIH conditions its grant funding on free public access to 

the resulting publications within one year of official publication. See 42 U.S.C. § 282c 
(2012); see also NIH Public Access Policy Details, NAT’L INSTS. OF HEALTH, 
http://publicaccess.nih.gov/policy.htm (last updated Mar. 27, 2014). 

141. See Directive 96/9/EC of the European Parliament and of the Council of 11 March 
1996 on the Legal Protection of Databases, ch. 3, 1996 O.J. (L077), available at http://eur­
lex.europa.eu/legal­content/EN/TXT/HTML/?uri=CELEX:31996L0009&from=EN (intro­
ducing specific and separate legal rights to databases). For examinations of this right and 
database protection, see generally Daniel J. Gervais, The Protection of Databases, 82 CHI.­
KENT L. REV. 1109 (2007); Jane C. Ginsburg, Copyright, Common Law, and Sui Generis 
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regime function like an off­the­books tax on the consumers of the 
property,142 this would avoid the political economy challenge of gov­
ernment expenditures, though it would impose costs on those using 
the dataset and ultimately for the consumers of black­box medicine.143 
On the negative side, making datasets exclusive would decrease at 
least some forms of follow­on innovation and would fall prey to the 
same anti­scale effects that make trade secrecy for datasets problemat­
ic.144  

The third and most radical form would be to treat data for black­
box medicine as something akin to public infrastructure and to com­
mit resources to developing it accordingly.145 Under this conception, a 
broad, well­developed dataset (or set of datasets) would be generated 
and curated by either a public or public­private partnership and made 
widely available for the development and validation of algorithms.146 
The nascent Precision Medicine initiative takes this approach, calling 
for the development of a one­million person longitudinal study linking 
extensive genetic and metabolomics measurements with electronic 
health records, creating a dataset accessible to qualified researchers.147 

                                                                                                                  
Protection of Databases in the United States and Abroad, 66 U. CIN. L. REV. 151 (1997). 
Such a system has been proposed and rejected in the U.S. Id. at 171. 

142. See Daniel J. Hemel & Lisa Larrimore Ouellette, Beyond the Patents-Prizes Debate, 
92 TEX. L. REV. 303, 312 (2013). 

143. Id. at 345–52. 
144. See, e.g., Bone, A New Look, supra note 121, at 266; Bone, The (Still) Shaky Foun-

dations, supra note 133, at 1808; see also Heidi L. Williams, Intellectual Property Rights 
and Innovation: Evidence from the Human Genome 14 (Nat’l Bureau of Econ. Research, 
Working Paper No. 16213, 2010), available at http://www.nber.org/papers/w16213 (de­
scribing the negative impact of short­term intellectual property on gene sequence data on 
later innovation). 

145. For a discussion of public access issues with genomic data infrastructures, see gen­
erally Barbara J. Evans, Economic Regulation of Next-Generation Sequencing, 42 J.L. MED. 
& ETHICS (SYMPOSIUM: SPECIAL SUPPLEMENT) 51 (2014) (describing how some features of 
genomic data resemble essential facilities and outlining potential antitrust challenges); 
BRETT M. FRISCHMANN, INFRASTRUCTURE: THE SOCIAL VALUE OF SHARED RESOURCES 
(2013) (describing how infrastructure theory applies to intellectual resources and property). 

146. The Human Genome Project provides clear precedent for this approach. In that case, 
a collaborative effort between government and private researchers sequenced the human 
genome with the intention of providing it freely to future researchers and innovators as a 
common infrastructure resource. See generally Francis S. Collins et al., The Human Genome 
Project: Lessons from Large-Scale Biology, 300 SCIENCE 286 (2003) (describing the organ­
ization and management of the Human Genome Project). Notably, while this public­private 
partnership was successful, a competing private firm, Celera Genomics, completed its paral­
lel sequencing effort at the same time, despite a later start. Id. at 289. Celera makes its own 
version of the human genome sequence available on commercial terms — illustrating both 
the fact that public efforts need not crowd out private efforts and the reality that duplicative 
data efforts can persist even in the face of well­funded centralized public initiatives.  

147. Collins & Varmus, supra note 1 at 794–95. 
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b. Algorithms 

Algorithms, the heart of black­box medicine, are also costly in­
formation goods.148 Current intellectual property incentives are both 
inadequate and misdirected, pointing development away from black­
box medicine and complex standalone algorithms. Improved incen­
tives could come in several forms, including changes in patent law, 
regulatory exclusivity, monetary incentives such as grants or prizes, 
and finally a quasi­status­quo reliance on trade secrecy.  

The most obvious intervention, given the preceding discussion on 
recent changes in patent law, would be to change (or change back) 
patent law to provide more effective protection to algorithms. The 
patent system could drive innovation here as in other biomedical are­
as. However, the misalignment between black­box medicine and pa­
tent doctrine stretch beyond recent developments in the law and 
touches fundamental precepts of patents. Patents require disclosure as 
the quid pro quo for exclusivity, and black­box algorithms may be 
impossible to disclose fully in many circumstances.149 And a fixed­
term exclusivity matches poorly with potentially flexible and evolving 
algorithms. In addition, while recent cases could be overturned by, for 
instance, placing pure algorithms within the bounds of patentable sub­
ject matter, such a policy choice might create more problems than it 
solves. Black­box medicine algorithms may frequently resemble typi­
cal computer software patents and algorithms, which are criticized by 
academics, frequently disliked by the software industry itself, and a 
lasting target of reform efforts.150 Algorithmic patents will also be 
difficult to enforce.151 Overall, changes within the patent system seem 

                                                                                                                  
148. See supra Part III (describing hurdles to development, including the substantial costs 

involved). 
149. See supra Part II.A.3.b. 
150. For some examples of academic criticism, see Jay Dratler Jr., Does Lord Darcy Yet 

Live? The Case Against Software and Business-Method Patents, 43 SANTA CLARA L. REV. 
823 (2003); Pamela Samuelson, Benson Revisited: The Case Against Patent Protection for 
Algorithms and Other Computer Program-Related Inventions, 39 EMORY L.J. 1025 (1990). 
For some examples of patent reform proposals and important considerations, see Colleen V. 
Chien, Reforming Software Patents, 50 HOUS. L. REV. 325, 350–90 (2012); Wendy Seltzer, 
Software Patents and/or Software Development, 78 BROOK. L. REV. 929, 985–87 (2013); 
Robert E. Thomas, Debugging Software Patents: Increasing Innovation and Reducing Un-
certainty in the Judicial Reform of Software Patent Law, 25 SANTA CLARA COMPUTER & 

HIGH TECH. L.J. 191, 232–40 (2008). But see Martin Campbell­Kelly & Patrick Valduriez, 
A Technical Critique of Fifty Software Patents, 9 MARQ. INTELL. PROP. L. REV. 249, 280–
81 (2005) (finding most frequently­cited software patents nonobvious and having genuine 
technical depth). 

151. Methods patents are generally difficult to enforce, due to a combination of difficulty 
in observing what competitors are doing (that is, knowing that infringement is occurring) 
and in ensuring that all steps are being performed by individuals acting under the direction 
of a single actor under the Federal Circuit’s rule in Muniauction, Inc. v. Thomson Corp., 
532 F.3d 1318, 1330 (Fed. Cir. 2008). See also Rachel Sachs, Innovation Law and Policy: 
Preserving the Future of Personalized Medicine 19–24 (unpublished manuscript) (on file 
with author). 
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unlikely to successfully drive the development of black­box algo­
rithms. 

Regulatory exclusivity presents a more easily tailored exclusivity 
incentive than that provided by patent law. In regulatory exclusivity, a 
regulator excludes competitors from selling a product by withholding 
premarket approval.152 Thus, regulatory exclusivity requires the exist­
ence of a premarket approval regime. In multiple contexts where such 
preapproval requirements exist, regulatory exclusivity is used as an 
innovation incentive;153 in other situations, it has been proposed but 
not implemented.154 The majority of extant applications of regulatory 
exclusivity are administered by the FDA, primarily around the mar­
keting of small­molecule drugs and biologics.155 If FDA approval 
were required for marketing black­box medicine algorithms, exclusiv­
ity could be offered; after approval, the FDA could withhold that ap­
proval from other firms offering similar algorithms for a fixed period 
of time as a reward to the innovator company. While regulatory ex­
clusivity offers the advantage of flexibility, it suffers from the prob­
lems of a fixed­period exclusivity and the necessity of a preapproval 
regime, which brings its own problems.156 However, in the case that 
the FDA proceeds with its current course and demands full regulatory 
approval of complex medical algorithms, exclusivity could be offered 
as an incentive for whatever black­box medicine algorithms remain 
possible. 

The last exclusivity possibility is to rely not on active interven­
tion, but rather on trade secrecy in light of other policy changes. As 
described above, trade secrecy matches quite well with black­box al­
gorithms because by their very nature they cannot be fully disclosed. 
The method of developing the algorithm and the dataset can be dis­
closed, as can the results, but the underlying mechanisms of the rela­
tionships, and perhaps the relationships themselves, cannot be 
disclosed — or reverse­engineered or misappropriated — because 
they are unknown. Under this view, the major expenses of database 
development and validation should be the subject of active policy, but 
algorithm development should be protected, not by any particular pol­
icy incentive, but by advantages in quality, strength of validation, and 
cost­effectiveness. Algorithms impossible to disclose are difficult to 

                                                                                                                  
152. See, e.g., Eisenberg, supra note 134, at 347–48; see generally Yaniv Heled, Regula-

tory Competitive Shelters, 76 OHIO ST. L.J. (forthcoming 2015) (on file with the author) 
(describing regulatory shelters, a taxonomy of types, and potential advantages and disad­
vantages as a public policy tool). 

153. Heled proposes the more general term “regulatory competitive shelter” to describe 
this phenomenon. See generally Heled, supra note 152 (describing regulatory exclusivity 
regimes for drug, biologic, and pesticide development). 

154. See W. Nicholson Price II, supra note 111, at 555. 
155. Heled, supra note 152, at 149 (listing fourteen such regimes, of which thirteen are 

administered by the FDA and one by the Environmental Protection Agency). 
156. See supra Part IV.C.2 (describing challenges with a preapproval approach). 
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duplicate, suggesting the effectiveness of trade secrecy for preventing 
appropriation. 

Finally, in addition to exclusivity­oriented interventions, incen­
tives for algorithm development could be offered through straightfor­
ward monetary rewards, in the form of grants or prizes. As an 
extensive literature addresses these possibilities in other contexts, they 
will not be discussed in detail here.157 

c. Validation 

Innovation policy should ensure that appropriate incentives exist 
to drive thorough validation.158 A bounty could be implemented for 
external validation (with standards likely set by the FDA). Bounties 
could be set as a small fraction of revenues of the model overall — set 
as part of the initial regulatory exclusivity bargain, if one exists. The 
size of the reward would then roughly scale with the overall value of 
the model.159 Rewards for confirmatory validation would ideally de­
crease asymptotically, so that initial validation would be much more 
valuable than further confirmation, but that any confirmation over a 
particular validity threshold receives at least some reward. This could 
be set to ensure that the overall fraction of originator revenue that 

                                                                                                                  
157. See, e.g., Abramowicz, supra note 106, at 1121 (patent extension auctions); Michael 

Kremer, Patent Buyouts: A Mechanism for Encouraging Innovation, 113 Q.J. ECON. 1137, 
1152–53 (1998) (discussing patent buyouts); Steven Shavell & Tanguy Van Ypersele, Re-
wards Versus Intellectual Property Rights, 44 J.L. & ECON. 525, 525–26 (2001) (arguing for 
the superiority of an optional prize system); Joseph Stiglitz, Give Prizes Not Patents, NEW 

SCIENTIST, Sept. 2006, at 21 (proposing monetary prizes); Marlynn Wei, Should Prizes 
Replace Patents? A Critique of the Medical Innovation Prize Act of 2005, 13 B.U. J. SCI. & 

TECH. L. 25 (2007) (examining prize systems and proposing a small­scale, optional prize 
system). Contra, e.g., F. Scott Kieff, Property Rights and Property Rules for Commercializ-
ing Inventions, 85 MINN. L. REV. 697, 702–03 (2001) (arguing against prizes). For an over­
view of grants and prizes, which places them in a taxonomy with patents and tax incentives, 
and argues that all four can set economic incentives that should be at base indistinguishable 
to rational firms, see Hemel & Ouellette, supra note 142, at 310–13. For an argument that 
existing prize literature has exaggerated the differences between patents and prizes, see 
generally Benjamin N. Roin, Intellectual Property Versus Prizes: Reframing the Debate, 81 
U. CHI. L. REV. 999 (2014). Roin also offers an extensive list of sources. Id. at 1001–02. 
This literature has typically not included regulatory exclusivity among the menu of options, 
perhaps because its exclusivity model parallels that of patents; to the extent that regulatory 
exclusivity has benefits over patents for certain fields of technological innovation, it may 
obviate certain criticisms that lead at least some scholars to prefer prizes. 

158. See supra Part III.C. 
159. One challenge is that focusing on monetary goals, whether revenue­based or sav­

ings­based, might focus incentives on models which deal primarily with costs rather than 
health improvements. If the principal goal of black­box medicine is cost­reduction, this 
focus would be unproblematic. However, if — as seems likely — improving health out­
comes is either a primary objective of black­box medicine or at least an important ancillary 
objective, then an alternate path to valuing validation would be needed. An alternate possi­
bility would be to offer rewards based on a combination of monetary savings and quality­
adjusted life­years or disability­adjusted life­years. 
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could be siphoned to incentivize validation would remain constant.160 
On the contrary, rewards for finding problems should also exist, and 
should not decrease with repetition.161 Grants or prizes could also po­
tentially be deployed to create incentives for validation. 

In sum, the substantial costs and hurdles involved in development 
of black­box medicine, coupled with the difficulty in appropriating 
returns from its information goods, suggest that significant policy in­
centives are needed. However, these incentives are better tailored to 
each phase of development, rather than trying to pursue a one­size­
fits­all model by relying exclusively on patent law or trade secrecy. 

B. Privacy 

Black­box medicine raises significant privacy concerns as well. 
Large databases of detailed health information are required for the 
development of predictive and diagnostic algorithms. Those databases 
must be populated with data from individual people, and privacy is a 
major concern for those who might contribute data.162 Datasets of 
health information, both genetic and otherwise,163 implicate privacy 
concerns at the broad policy level, including discrimination, stigma, 
and dignitary harms.164  

                                                                                                                  
160. For instance, for a validation cap of 2%, the first validator to pass a certain threshold 

could receive 1%, and each subsequent validator could receive half the amount of the previ­
ous validator; the sum of these fractions converges to 2%. 

161. The incentives available for challenges to models might be expected to decrease 
naturally; if a model is called into question, its value presumably decreases and any fixed 
fraction of that value would also decrease. There are potential challenges to this approach, 
including falsification of the testing algorithms and eventual depletion of profits from the 
initial algorithm, but a fuller exploration of this mechanism must await future work. 

162. See David J. Kaufman et al., Public Opinion About the Importance of Privacy in Bi-
obank Research, 85 AM. J. HUM. GENETICS 643, 645–47 (2009) (finding that out of 4659 
surveyed U.S. adults, 90% were concerned about privacy protections related to a proposed 
study). 

163. Significant debate exists on whether genetic information raises meaningfully differ­
ent privacy concerns than other health information. Genetic information has been likened to 
a “future diary,” George J. Annas, Privacy Rules for DNA Databanks: Protecting Coded 
“Future Diaries,” 270 J. AM. MED. ASS’N 2346, 2347–48 (1993), and is subject to special 
protections under, among other laws, the Genetic Information Nondiscrimination Act of 
2008, Pub. L. No. 110­233, 122 Stat. 881 (2008). Genetic information, in particular, can 
implicate the privacy not only of the individual, but also of his or her family. On the other 
hand, a NIH­Department of Energy Working Group concluded that genetic information is 
not substantially different from other health­related information, though it is undoubtedly 
sensitive. NIH­DEP’T OF ENERGY WORKING GRP. ON ETHICAL, LEGAL & SOCIAL 

IMPLICATIONS OF HUMAN GENOME RESEARCH, GENETIC INFORMATION AND HEALTH 

INSURANCE: REPORT OF THE TASK FORCE ON GENETIC INFORMATION AND INSURANCE 
(1993), available at http://www.genome.gov/10001750. 

164. See, e.g., Berrie Rebecca Goldman, Pharmacogenomics: Privacy in the Era of Per-
sonalized Medicine, 4 NW. J. TECH. & INTELL. PROP. 83, 84 (2005); Joseph Phelps et al., 
Privacy Concerns and Consumer Willingness to Provide Personal Information, 19 J. PUB. 
POL’Y & MARKETING 27, 28 (2000); Laszlo T. Vaszar et al., Privacy Issues in Personalized 
Medicine, 4 PHARMACOGENOMICS 107, 110 (2003). 
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Disclosure of personal health information raises the potential for 

discrimination in multiple contexts.165 Discrimination by health insur­
ers, where insurance would be refused to individuals with known 
health risks or genetic predispositions, is largely prohibited by the 
Affordable Care Act (“ACA”) and other statutes.166 In addition, genet­
ic employment discrimination — based on worries about job perfor­
mance or enhanced occupational risks — is a lasting concern, though 
it, too, has been largely addressed by the Genetic Information Nondis­
crimination Act (“GINA”)167 and the Americans with Disabilities Act 
(“ADA”).168 However, discrimination in the market for life insurance 
against actuarially expensive patients remains unaddressed.169 

In addition to discrimination in insurance and employment con­
texts, stigma based on the disclosure of personal health information is 
a major privacy concern. Individuals may face stigma based on exist­
ing disease states, such as HIV/AIDS,170 or on a predisposition, such 
as that for Alzheimer’s disease.171 

Finally, there are dignitary harms from the disclosure of personal 
health information without consent. Control of personal health infor­
mation, genetic or otherwise, is an important autonomy right for indi­
viduals.172 Disclosure without consent impinges this autonomy right 
and harms the dignity of the individual whose data is disclosed.  

In some respects, privacy and scientific development concerns 
seem to be directly opposed. Broader sets of available information in 
a dataset increase the power and number of relationships that can be 
identified, but also increase the likelihood that anonymous data can be 
reassociated with an individual.173 Broader access to datasets increas­

                                                                                                                  
165. Fears about discrimination seem to be greater than the actual incidence of discrimi­

nation, though evidence is limited. See Eric A. Feldman, The Genetic Information Nondis-
crimination Act (GINA): Public Policy and Medical Practice in the Age of Personalized 
Medicine, 27 J. GEN. INTERNAL MED. 743, 744 (2012). 

166. Id. 
167. Genetic Information Nondiscrimination Act §§ 201–208. 
168. See Mark A. Rothstein, GINA, the ADA, and Genetic Discrimination in Employ-

ment, 36 J.L. MED. & ETHICS 837, 838 (2008). 
169. See Yann Joly et al., Genetic Discrimination and Life Insurance: A Systematic Re-

view of the Evidence, 11 BMC MED. 25, 25 (2013); Cathleen D. Zick et al., Genetic Testing, 
Adverse Selection, and the Demand for Life Insurance, 93 AM. J. MED. GENETICS 29, 29 
(2000).  

170. Angelo A. Alonzo & Nancy R. Reynolds, Stigma, HIV and AIDS: An Exploration 
and Elaboration of a Stigma Trajectory, 41 SOC. SCI. MED. 303, 305 (1995). 

171. Peter J. Neumann et al., Public Attitudes About Genetic Testing for Alzheimer’s Dis-
ease, 20 HEALTH AFF. 252, 259–60 (2001).  

172. Lawrence O. Gostin, Health Information Privacy, 80 CORNELL L. REV. 451, 524 
(1995). 

173. See generally, e.g., Bradley Malin & Latanya Sweeney, How (Not) To Protect Ge-
nomic Data Privacy in a Distributed Network: Using Trail Re-Identification To Evaluate 
and Design Anonymity Protection Systems, 37 J. BIOMED. INFO. 179 (2004); Paul Ohm, 
Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization, 57 
UCLA L. REV. 1701 (2010); Felix T. Wu, Defining Privacy and Utility in Data Sets, 84 U. 
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es the likelihood that a greater variety of actors can develop black­box 
algorithms, but decreases control over the information.174 To the ex­
tent that privacy concerns decrease the number of individuals whose 
information can be included in datasets, these privacy issues also mat­
ter for algorithm robustness and ease of development. 

Data collection must also meet the specific legal requirements of 
the Health Insurance Portability and Accountability Act, widely 
known as “HIPAA.”175 In relevant part, HIPAA limits the disclosure 
of patients’ protected health information by “covered entities” and 
their “business associates”: Covered entities include providers, health 
insurance plans, and healthcare clearinghouses.176 Business associates 
include anyone who assists or performs any HIPAA­regulated activity 
on behalf of a covered entity, or provides services to the entity that 
involve individually identifiable health information.177 The protected 
information includes medical records and billing records.178 General­
ly, protected health information may only be disclosed by a covered 
entity with the patient’s permission179 or for certain narrowly defined 
permitted purposes.180  

Consent for the sharing of health information for research purpos­
es may be given without incentives or in exchange for monetary com­
pensation,181 though consent is challenging to obtain for past health 
records.182 HIPAA also contains a broad exception, which allows 

                                                                                                                  
COLO. L. REV. 1117 (2013); Jane Yakowitz, Tragedy of the Data Commons, 25 HARV. J.L. 
& TECH. 1 (2011). 

174. See supra Part IV.A.3.a (describing datasets as infrastructure for future innovation). 
On the other hand, a substantial fraction of individuals have little concern over wide access 
to such data. See Kaufman et al., supra note 162, at 647 (noting that 49% of respondents 
were willing to have deidentified health information and research results “made available on 
the internet to anyone”). 

175. Health Insurance Portability and Accountability Act of 1996, Pub. L. No. 104­191, 
110 Stat. 1936 (1996); see Cohen et al., supra note 44, at 1141 (describing HIPAA interac­
tions with predictive analytics — a version of black­box medicine — and recommending 
collection of deidentified data while providing notice and possibly added privacy safe­
guards). 

176. 45 C.F.R. § 160.102 (2014). Only providers who transmit health information in 
electronic form in connection with certain transactions are “covered entities.” Id. Healthcare 
clearinghouses process information between different formats. 45 C.F.R. §§ 160.103, 
164.500(b) (2014). 

177. 45 C.F.R. § 160.103 (2014). 
178. 45 C.F.R. § 164.501 (2014). 
179. 45 C.F.R. § 164.510 (2014). 
180. 45 C.F.R. § 164.502 (2014). 
181. See Kaufman et al., supra note 162, at 645 (noting that 73% of respondents would 

probably or definitely “sign a consent to provide past medical records” as part of a proposed 
study). 

182. Cf. Gert Helgesson et al., Letter to the Editor, Ethical Framework for Previously 
Collected Biobank Samples, 25 NATURE BIOTECH. 973, 974 (2007) (discussing the related 
issue of consent for samples in biobanks). Recontacting individuals whose records have 
previously been generated, but who are not currently in contact with the record­holder, can 
be an expensive proposition. 
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nonconsensual data use:183 Patient­level data can be used without the 
patient’s consent as long as that data is deidentified, either by remov­
ing eighteen named identifiers including city, name, and e­mail ad­
dress; or by the declaration of an individual with appropriate expertise 
that “the risk [that data can be reidentified] is very small.”184 This ex­
emption for deidentified data allows significant possibilities for as­
sembling data,185 but faces two problems. First, deidentification 
makes updating datasets much more challenging, especially when the 
updates derive from multiple sources.186 Second, as more data are 
added to a particular person’s record, even if standard identifiers are 
removed, the possibility of reidentification increases.187 The first 
problem potentially increases the cost of developing black­box medi­
cine, and the second reduces the practical effect of anonymization, 
though it does not compromise technical HIPAA compliance.  

C. Regulation 

The regulation of black­box medicine will also be central to its 
development and spread. Although regulation arises from different 
sources, including through the mechanism of tort law,188 the FDA 
exercises the most prominent regulation authority of black­box medi­
cine.189 This Section will briefly describe the current regulatory re­
gime governing the technology involved in black­box medicine, 
including the FDA’s recently proposed changes to that regime, and 
will then discuss regulatory challenges of black­box medicine. 

                                                                                                                  
183. See Barbara J. Evans, Much Ado About Data Ownership, 25 HARV. J.L. & TECH. 69, 

82–86 (2011) (discussing nonconsensual use of data). 
184. 45 C.F.R. § 164.514(b) (2014). 
185. Cohen et al., supra note 44, at 1141; Vaszar et al., supra note 164, at 107. 
186. The challenge arises because data are anonymized by removing a patient’s name or 

identifying information and instead associating the data with a unique identifier. For an 
example of irrevocable identification stripping, see Jill Pulley et al., Principles of Human 
Subjects Protections Applied in an Opt-Out, De-Identified Biobank, 3 CLINICAL 

TRANSLATIONAL SCI. 42, 43–46 (2010), available at http://www.ncbi.nlm.nih.gov/pmc/ 
articles/PMC3075971/. As long as future data from that patient can be associated with the 
same unique identifier, that data can be added to the anonymous record. However, if data 
about the patient is anonymized in different ways from different data sources (e.g., if John 
Smith becomes XB17562 in one database, but 15064324C in a different database), it is 
difficult if not impossible to combine those records. Other databases and biobanks allow the 
possibility of reidentification. 

187. Id. at 45. 
188. Black­box medicine raises significant tort law questions: If an algorithm is unknown 

or impossible to disclose, under what context can physicians be liable for decisions relying 
on that algorithm? Is knowledge of the reliability of the algorithm sufficient to immunize 
against such liability? These questions, and other issues of tort law, are outside the scope of 
this Article but are important for the development of black­box medicine. 

189. In addition — and in tension with — the FDA’s regulation of black­box medicine as 
a medical device, black­box medicine can be considered a form of practicing medicine, 
which is typically not under the FDA’s jurisdiction. Rather, this is governed by state law. 
Exploring the scope of this juxtaposition is outside the scope of this Article. 
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1. Existing Regulatory Structures 

Although the FDA has long left diagnostic tests relatively unregu­
lated, that situation has recently begun to change, so that black­box 
medicine will likely be subjected to more stringent requirements. As a 
baseline, the FDA exercises regulatory authority over medical devic­
es, which are subject to premarket approval under the Federal Food, 
Drug, and Cosmetic Act (“FDCA”).190 “Medical device” is defined 
very broadly to include any “instrument, apparatus, implement, ma­
chine, contrivance, implant, in vitro reagent, or other similar or related 
article . . . which is . . . intended for use in the diagnosis of disease or 
other conditions, or in the cure, mitigation, treatment, or prevention of 
disease, in man or other animals.”191 In vitro devices are a subset of 
devices used in diagnosis.192 As apparatuses “intended for use in the 
diagnosis of disease or other conditions,” the computer systems used 
in black­box medicine likely fall under this broad definition of “medi­
cal device.”193 

Medical devices are subject to a premarket­approval regime based 
on risk classification from low­risk (Class I) to high­risk (Class III).194 
Class I devices are subject only to general controls.195 Class II devices 
require premarket approval, but that approval can be based on a de­
termination that the product is substantially equivalent to an already­
approved product.196 Class III devices require a full premarket ap­
proval process, which is substantially more expensive and time­
consuming than either simple notification or demonstration of equiva­
lence under Class II regulations.197 

                                                                                                                  
190. Federal Food, Drug, and Cosmetic Act, Pub. L. No. 75­717, 52 Stat. 1040 (codified 

as amended in scattered sections of 21 U.S.C.); 21 U.S.C. § 360c(a)(1) (2012). 
191. FDCA § 321(h). Devices also include instruments, etc., which either are recognized 

as such in the National Formulary or the United States Pharmacopeia or are “intended to 
affect the structure or any function of the body of man or other animals.” Id. Devices must 
not primarily operate through chemical action within or on the body. Id.  

192. The FDA defines “in vitro diagnostic devices” as “those reagents, instruments, and 
systems intended for use in the diagnosis of disease or other conditions, including a deter­
mination of the state of health, in order to cure, mitigate, treat, or prevent disease or its 
sequelae.” 21 C.F.R. 809.3(a) (2014). 

193. The FDA has taken an expansive interpretation that computer systems dealing with 
health information are properly classified as medical devices. See 21 C.F.R. § 880.6310 
(2014) (defining medical device data systems as devices which transfer, store, convert, or 
display electronic data from medical devices). On the other hand, at least some forms of 
black­box medicine could be characterized as pure data, that is, datasets, algorithms, predic­
tions, and recommendations with no affiliated apparatus at all. Under such a view, black­
box medicine would appear much closer to the pure practice of medicine rather than as a 
regulable device. A full analysis of this question is outside the scope of this Article, but the 
FDA’s treatment of diagnostic laboratory­developed tests will undoubtedly be the subject of 
scholarly attention and, potentially, litigation. 

194. 21 U.S.C. § 360c(a)(1).  
195. Id. 
196. Id. at §§ 360c(a)(1), 360c(i). 
197. Id. at §§ 360c(a)(1), 360e. 
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Until quite recently, a large fraction of black­box medicine devel­

opers could expect shelter from this regulatory structure under the 
FDA’s exercise of enforcement discretion with respect to laboratory­
developed tests (“LDTs”) — but no longer. Since the creation of this 
regime in 1976 in the Medical Device Amendments, the FDA has not 
enforced premarket approval requirements for in vitro devices that are 
“designed, manufactured, and used within a single laboratory.”198 
While such LDTs were initially relatively simple tests using FDA­
approved clinical materials, the category has expanded dramatically to 
include complex diagnostics run through a central facility.199 The 
FDA, reacting to this change, is reconsidering its policy of enforce­
ment discretion, and in July 2014, informed Congress that it intended 
to regulate LDTs comprehensively under the risk­based framework 
applied to all in vitro devices.200 Adding to the likelihood that the 
FDA will regulate the technologies involved in black­box medicine, 
the FDA specifically described potential risk factors in modern LDTs, 
including that many LDTs are “used to direct critical treatment deci­
sions (e.g., prediction of drug response)” and/or are “highly complex 
(e.g., automated interpretation, multi­signal devices, use of non­
transparent algorithms and/or complex software to generate device 
results).”201 These characteristics are central to the concept of black­
box medicine, and thus significantly increased FDA regulation ap­
pears likely.202 

The eventual classification of black­box medicine implementa­
tions will await FDA action.203 However, the FDA has identified as a 

                                                                                                                  
198. FOOD AND DRUG ADMIN., U.S. DEP’T OF HEALTH & HUM. SERVS., DRAFT 

GUIDANCE FOR INDUSTRY, FOOD AND DRUG ADMINISTRATION STAFF, AND CLINICAL 

LABORATORIES: FRAMEWORK FOR REGULATORY OVERSIGHT OF LABORATORY DEVELOPED 

TESTS (LDTS) 6 (2014). 
199. Id. at 7–8. Arguably, the FDA’s exercise of enforcement discretion with respect to 

LDTs created incentives for innovators developing new tests to keep them centralized to a 
laboratory instead of selling diagnostic kits or otherwise distributing the technology. This 
could be viewed negatively, as firms exploiting the agency’s policy choice, or positively, as 
the agency deliberately allowing space for innovation or attempting to avoid controversial 
limitations on the development of new medicine. See Sharon Jacobs, The Administrative 
State’s Passive Virtues, 66 ADMIN. L. REV. 565, 623 (2014) (arguing the benefits of agency 
decisions not­to­decide or to decide issues piecemeal). 

200. Letter from Sally Howard, Deputy Comm'r, FDA, to Tom Harkin, Chairman of the 
Comm. on Health, Educ., Labor and Pensions, United States Senate (Jul. 31, 2014), availa-
ble at http://www.fda.gov/downloads/MedicalDevices/ProductsandMedicalProcedures/ 
InVitroDiagnostics/UCM407409.pdf. 

201. FOOD AND DRUG ADMIN., supra note 198, at 8. 
202. This discussion elides the question of the extent to which regulation of black­box 

medicine is desirable, rather than merely expected. Instead, it focuses briefly on the regula­
tory challenges that might arise, given the likelihood of regulation. 

203. In determining the risk classification of an LDT, the FDA will consider, among oth­
er factors, the risk level of the disease/patient population, use in screening versus diagnosis, 
what clinical decision will be based on the test, the availability of other information in mak­
ing that decision, alternatives for diagnosis and treatment, the cost of error, and the exist­
ence of adverse events. FOOD AND ADMIN., supra note 198, at 12. 
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generally higher­risk class those devices “that act like companion di­
agnostics,” including those “that claim to enhance the use of a specific 
therapeutic product, through selection of therapy, patient population, 
or dose, but which are not included in the therapeutic product labeling 
(e.g., devices . . . that claim to predict who will respond to a therapy 
approved for use in a larger population).”204 The FDA will likely find 
that this definition applies to most of black­box medicine, and thus, 
implementation of black­box medicine will often be subject to greater 
approval hurdles. 

2. Regulatory Challenges 

Black­box medicine is an awkward fit for the FDA’s typical regu­
latory paradigm.205 The FDA approval process focuses on explicit 
knowledge, typically derived from systematic experimentation and 
clinical trials; in fact, the premarket approval process in particular 
almost always requires clinical trials.206 Black­box medicine, on the 
other hand, by definition relies on implicit processes and relationships 
that are not amenable to explication and straightforward validation 
through clinical trials.207 To the extent that FDA preapproval relies on 
clinical trials to demonstrate safety and efficacy — as the premarket 
approval process does — black­box medicine will face major chal­
lenges meeting those goals. As mentioned briefly earlier, validation of 
black­box medicine requires rechecking algorithms, ideally with par­
allel development models.208  

A second key challenge of applying FDA regulatory approaches 
to black­box medicine — particularly a preapproval approach — is 
the inherent plasticity of at least some forms of black­box medicine. 
Some black­box medicine models can be static, that is, developed 
based on a static set of data, validated, and then stabilized after initial 
development. Others can be dynamic, with an algorithm that considers 
additions to the dataset and updates the predictive model in response. 
This latter type fits extremely poorly into a preapproval regime, which 
approves one product at a time with the expectation that such a prod­
uct will remain constant for enough time to recoup the cost and effort 
of regulatory approval.  

                                                                                                                  
204. Id. at 26–27. 
205. See PRIORITIES FOR PERSONALIZED MEDICINE, supra note 25, at 40 (noting the po­

tential for heavy­handed or uncertain FDA regulation to stifle the development and adoption 
of personalized medicine). 

206. See PMA Clinical Studies, FDA, http://www.fda.gov/MedicalDevices/Device ...... 
RegulationandGuidance/HowtoMarketYourDevice/PremarketSubmissions/Premarket 
ApprovalPMA/ucm050419.htm (last updated Sept. 5, 2014). 

207. However, some form of overarching clinical trial is possible, as mentioned supra 
note 95. 

208. See supra Part III.C. 
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3. Potential Regulatory Solutions  

The status quo/business­as­usual approach is unlikely to allow the 
innovative development of algorithmic medicine, with its attendant 
benefits. Three potential oversight mechanisms might ameliorate the 
situation. First, the FDA could shift to an adaptive certification role, 
drawing from the extensive efforts — both policy and scholarly — on 
adaptive governance and regulation. Under this approach, rather than 
requiring one­shot premarket approval of black­box medicine imple­
mentations, the FDA could more dynamically allow market access 
subject to increased validation, historical success, and monitoring of 
benefits and adverse events.   

Second, the FDA could rely more heavily on third­party valida­
tion of black­box medicine techniques, either as a precondition of 
marketing or as a continuing evaluation after early limited market 
approval. As described above, expert third parties can rigorously 
evaluate algorithms by completing parallel testing on the same da­
tasets, checking new test datasets, and also completing quality­control 
checks on development methods.209 Third­party validation has the 
potential to be more nimble and flexible than oversight through the 
FDA’s regulatory structure; rather than trying to increase the agency’s 
agility, that role can be outsourced to private parties.210 Third parties 
could be compensated either directly by the FDA or through a bounty­
based system as described previously, which would create strong in­
centives for critical evaluation.211 

Third and finally, the FDA could implement a less centralized 
oversight regime based on as much transparency as possible. In each 
of the prior two possibilities, confidentiality could be maintained for 
the data on which the initial black­box medicine developer based its 
algorithms, for the algorithmic development, and for the algorithms 
themselves. Some aspects, such as the precise structures of the algo­
rithms and the relationships underlying them, could not be disclosed 
in any case; such is the nature of black­box medicine. A transparency 
model would mandate disclosure of much if not all of the information 
capable of being disclosed, which would open the algorithms up to 
examination by a larger range of parties, including the agency — 
which would likely retain some role — and both commercial and non­
commercial third parties. The clearest role here would be for academ­
ics demonstrating problems with black­box medicine 
implementations. Since transparency would sharply curtail the availa­

                                                                                                                  
209. Id. 
210. The FDA already allows some such outsourcing; for instance, the definition of med­

ical device includes those items categorized as such in the privately run U.S. Pharmacopeia 
and the National Formulary. FDCA, 21 U.S.C. § 321(h) (2012). 

211. See supra Part IV.A.3.c. 
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bility of trade secrecy, it would need to be coupled with other innova­
tion incentives.212 

None of these regulatory mechanisms is a panacea. However, 
each possibility seems better suited to the new phenomenon of black­
box medicine than attempting to shoehorn nontransparent and poten­
tially plastic algorithms into a clinical­trial­based model ill­suited for 
their evaluation and approval. 

D. Commercialization 

A fourth and final challenge for black­box medicine lies in its 
commercialization, and especially in insurance reimbursement. While 
commercialization does not always raise policy concerns, the public 
health and social justice aspects of black­box medicine suggest that 
the issue is worth attention. If black­box medicine does indeed create 
significant improvements in medical care,213 such improvements have 
the potential to improve health and lower health care costs, but only if 
the technology is actually adopted into medical practice. With respect 
to social justice, black­box medicine could also easily become an ex­
pensive technology, the province of only wealthy patients. To combat 
this possibility, adoption should be widespread and should interface 
with programs designed to provide health care access to disadvan­
taged populations.214 

1. Reimbursement 

Payment is the dominant concern for adoption of a newly availa­
ble medical technology. Doctors must be paid for using the new tech­
nology, and in the world of health care, that largely means that 
insurers, whether public or private, must make or reimburse that pay­
ment.215 Accordingly, reimbursement decisions by insurance provid­
ers, whether public or private, are a key concern for black­box 
medicine. Although the standard reimbursement rubric is likely to be 
problematic for black­box medicine, public policy could drive overall 

                                                                                                                  
212. See supra Part IV.A. 
213. This assumption is difficult to verify or falsify, as black­box medicine is still in ear­

ly development. Personalized medicine, moreover, has made less of a difference to medical 
practice than its early proponents promised, suggesting that some skepticism may be in 
order. However, the magnitude of the problem — variable drug response and languishing 
second uses for approved medicines, in particular — and the enormous trove of data creates 
grounds for at least cautious optimism about black­box medicine’s potential impact. 

214. See Cohen et al., supra note 44, at 1146. 
215. Without insurance, doctors can still be paid for treatment, of course. However, if 

treatments not covered by insurance are expensive, they may be beyond the reach of non­
wealthy patients, raising concerns about both the breadth of patient adoption and about the 
equitable use of new technology. 
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adoption by encouraging reimbursement by public insurers, especially 
Medicare and Medicaid. 

Reimbursement decisions are made both publicly and privately, 
and at both national and local levels. For public payers, the Centers 
for Medicare and Medicaid Services (“CMS”) make national deci­
sions about reimbursement; these decisions are typically the bellweth­
er for private reimbursement decisions.216 Medicare only reimburses 
genetic tests where they are “reasonable and necessary for the diagno­
sis or treatment of illness or injury or to improve the functioning of a 
malformed body member.”217 National coverage decisions apply to all 
Medicare contractors and administrative law judges.218 In the absence 
of FDA approval for laboratory­developed tests,219 which make up the 
majority of explicit personalized medicine diagnostic tests, the Medi­
care Evidence Development and Coverage Advisory Committee has 
advised CMS to consider Medicare reimbursement for genetic testing 
only where there is strong evidence that it improves health out­
comes.220 However, outside the national decision structure, local Med­
icare Administrative Contractors can approve personalized medicine 
tests for reimbursement, sometimes with national effect.221 Medicare 
does not reimburse for asymptomatic screening tests.222 

                                                                                                                  
216. Michael D. Graf et al., Genetic Testing Insurance Coverage Trends: A Review of 

Publicly Available Policies from the Largest US Payers, 10 PERSONALIZED MED. 235, 235 
(2013). 

217. 42 U.S.C. § 1395y(a)(1)(A) (2012); see also SECRETARY’S ADVISORY COMMITTEE 

ON GENETICS, HEALTH, AND SOCIETY, FINAL REPORT: COVERAGE AND REIMBURSEMENT 

OF GENETIC TESTS AND SERVICES (2006), available at http://oba.od.nih.gov/oba/ 
sacghs/reports/CR_report.pdf. 

218. See, e.g., 42 C.F.R. § 405.1060(a)(4) (2014). 
219. See supra Part IV.C. 
220. Meeting Notice, 74 Fed. Reg. 10918 (Mar. 13, 2009); Meeting Notice, 73 Fed. Reg. 

77717 (Dec. 19, 2008). 
221. 42 U.S.C. § 1395ff(f)(2)(b) (2012). Although Medicare Administrative Contractors 

only approve local reimbursement, as long as at least 14 days elapse between a physician’s 
request for a test and the laboratory’s conducting that test, reimbursement is determined on 
the basis of the laboratory’s location instead of the patient’s location. CMS, MEDICARE 

CLAIMS PROCESSING MANUAL, ch. 1, § 10.1.5.4, available at http://www.cms.gov/ 
Regulations­and­Guidance/Guidance/Manuals/Internet­Only­Manuals­IOMs­Items/ 
CMS018912.html. Accordingly, many laboratory­developed tests have national reimburse­
ment scope based on local decisions of the jurisdiction encompassing the location of the 
laboratory. For instance, a local coverage decision that covered several Western states na­
tionalized reimbursement for BRCA1 and BRCA2 genetic testing, as the only laboratory 
doing such testing — Myriad Genetics — lay within that decision’s jurisdiction. CMS, 
LOCAL COVERAGE DECISION: GENETIC TESTING (2014), available at http://www.cms.gov/ 
medicare­coverage­database/details/lcd­details.aspx?LCDId=24308&ContrId=356&ver=73 
&ContrVer=1&Date=04%2f23%2f2009&DocID=L24308&bc=iAAAAAgACAAAAA%3d
%3d&. 

222. CMS, MEDICARE CLAIMS PROCESSING MANUAL, ch. 16, § 120.1, available at 
http://www.cms.gov/Regulations­and­Guidance/Guidance/Manuals/Internet­Only­Manuals­
IOMs­Items/CMS018912.html (“Tests that are performed in the absence of signs, symp­
toms, complaints, personal history of disease, or injury are not covered except when there is 
a statutory provision that explicitly covers tests for screening as described.”). 
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Private insurers must make similar coverage decisions and, in the 

absence of FDA approval, look to Medicare and Medicaid reim­
bursement decisions — both national and local — and professional 
guidelines.223 Reimbursement for the explicit personalized medicine 
diagnostic tests available today is “limited and variable” between dif­
ferent tests and different insurers.224 Reimbursement is generally driv­
en by the strength of the available clinical evidence; tests with better 
clinical evidence are more likely to be covered by more insurers.225 
About a third of private insurers reimburse at least one genetic test as 
of October 2013.226 The genetic tests most commonly reimbursed by 
private payers are related to cancer.227 Roughly half of all insurance 
policies explicitly exclude coverage of a particular genetic test.228 

The current reimbursement landscape for explicit personalized 
medicine does not suggest an easy road for reimbursement of black­
box medicine. Full FDA approval would facilitate reimbursement,229 
but as described above, such an approval requirement is likely to stunt 
its development.230 Absent such approval, public and private pro­
grams typically require strong clinical evidence of improved medical 
outcomes; the evidence for pharmacogenomics testing to determine 
the optimal dose for the drug warfarin, for instance, was deemed in­
sufficient in 2009 to justify Medicare reimbursement.231 This type of 
explicit clinical evidence is unlikely, by design, to be present for the 
vast majority of black­box medicine; if black­box medicine is subject 
to the same reimbursement rubric, it will almost certainly not be re­
imbursed. In addition, because Medicare reimburses only tests to aid 
in diagnosis and treatment — that is, not asymptomatic or prophylac­
tic screening — predictive black­box medicine aimed at catching 
problems before they become serious are unlikely to be reimbursed.  
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providers/policies/final/534.pdf; see also supra notes 35–37 and accompanying text. 
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Black­box medicine promises better care, more individualized 

care, with lower overall costs;232 theoretically, then, this is something 
that both profit­motivated private insurers and health­and­funding­
motivated public payers should prefer. However, adoption of new 
medical technologies for reimbursement inevitably faces the challeng­
es described above, and the key differences of black­box medicine 
(complex implicit relationships and the absence of explanatory clini­
cal trials) make those challenges greater.  

Nevertheless, CMS can play a clear and leading role in facilitat­
ing reimbursement of black­box medicine and adoption generally. 
CMS could broaden its requirement for significant evidence of medi­
cal improvement to include not only clinical evidence, but also valida­
tion of the type discussed above.233 Similarly, CMS could recognize 
that complex algorithmic medicine may blur the line between diag­
nostic testing, once symptoms exist, and asymptomatic screening: 
Holistic algorithms which take into account a large set of biomarkers 
and other data may perform both functions and could realistically be 
reimbursed even if not purely diagnostic or treatment­oriented.  

At least in the current setting, where CMS leads, private insurers 
often follow, suggesting that CMS adoption could drive reimburse­
ment for black­box medicine generally.234 Even if private insurers did 
not follow the policy choice for its own merits, widespread adoption 
by CMS would drastically increase the data available if implementa­
tion studies followed. This increase in data would allow other payers 
to follow suit even without deviating from their own standard eviden­
tiary requirements. Finally, CMS decisions to allow the reimburse­
ment of black­box medicine implementations would counter some 
concerns about equity, as CMS pays for medical care for many of the 
relatively disadvantaged. 

2. Adoption 

An additional related concern is the adoption of black­box medi­
cine by patients and doctors in practice. In particular, the implicit na­
ture of black­box medicine creates at least potential problems for 
trust: If doctors do not know the biological relationships underlying a 
validated black­box medicine recommendation and cannot explain it 
to patients, will they be less likely to adopt that recommendation as 
their own? Will patients be less likely to accept advice if they cannot 

                                                                                                                  
232. Even if black­box medicine is costly in itself, avoiding more costly complications 

and disease progression should offset that cost. 
233. In an integrated policy structure, CMS approval of certain types of validation could 

be used as a lever to drive that type of validation and to ensure the quality of black­box 
medicine as an unconventional innovation incentive. This possibility, while promising, is 
outside the scope of this Article. 

234. Graf et al., supra note 216, at 235. 
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understand its genesis because no one does?235 And, if so, how can 
law and policy choices facilitate acceptance by patients and provid­
ers?236  

Law could help address this adoption concern in at least two dif­
ferent ways, either by directly enhancing trust or by altering the incen­
tives to offset the trust deficit. Under the first possibility, approved or 
well­validated black­box medicine implementations could be given a 
formal imprimatur. The formal FDA approval process would certainly 
be such an assurance of efficacy, though as discussed above, the 
standard FDA process has problematic effects on the development of 
black­box medicine in the first place.237 Third­party certification 
could provide a similar effect, provided that the third party is itself 
either officially certified or acquires trustworthiness of its own. 

The second possibility requires adjusting treatment incentives to 
offset the problem of trust in implicit mechanisms, at least long 
enough to drive initial adoption. For instance, to allay fears of mal­
practice suits arising from the use of a new and inherently nontrans­
parent form of medicine, specialist associations (or state lawmakers) 
could make clear that some set of implementations — presumably, 
those well­validated as described above — would be accepted as 
within the standard of care.238 Such measures would ideally have only 
temporary effects; once a particular black­box implementation 
reached widespread use, it would presumably be acceptable as the 
standard of care on its own merits (or similarly, fail on its own mer­
its).239 Along these lines, no policy action in this respect might actual­
ly be needed; the potential benefits of black­box medicine could 
themselves provide enough of an incentive to drive initial adoption. 

                                                                                                                  
235. Black­box medicine also raises potential issues of informed consent, though those 

are outside the scope of this Article. 
236. One potential response, admittedly somewhat cynical, is recognition that doctors 

and patients already accept treatments even though they have relatively little knowledge of 
the evidence for those treatments. See, e.g., Donna T. Chen et al., U.S. Physician Knowledge 
of the FDA-Approved Indications and Evidence Base for Commonly Prescribed Drugs: 
Results of a National Survey, 18 PHARMACOEPIDEMIOLOGY & DRUG SAFETY 1094, 1097–
99 (2009) (finding physicians could only correctly identify whether a drug was FDA­
approved for a particular indication 55% of the time on average); Editorial, Mechanism 
Matters, 16 NATURE MED. 347, 347 (2010) (noting that mechanism of action is unknown 
for many drugs). However, even given that possibility, it seems likely that at least some 
knowledge is better than none. 

237. See supra Part IV.C.2. 
238. This approach, at least in its private form, is challenged by the resistance courts have 

shown to giving conclusive effect to clinical practice guidelines. See generally, e.g., Conn v. 
United States, 880 F. Supp. 2d 741, 745–47 (S.D. Miss. 2012) (discussing judicial differ­
ences on the utility of clinical practice guidelines in establishing the standard of care); 
Michelle M. Mello, Of Swords and Shields: The Role of Clinical Practice Guidelines in 
Medical Malpractice Litigation, 149 U. PA. L. REV. 645 (2001). 

239. Indeed, interventions to classify a particular implementation as acceptable care 
should be temporary, so as to avoid ossifying treatment options. 
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V. CONCLUSION 

Overall, black­box medicine offers immense promise for chang­
ing the way medicine is practiced and the way medical technologies 
are created and deployed. Instead of waiting for the painstaking de­
velopment of explicit knowledge through the clinical trial pathway, 
limited by coordination, the number of available subjects, and the 
identification of intersecting biological pathways, the continually 
growing trove of health data allows underlying relationships to be 
leveraged to improve health, lower the cost of developing treatments, 
and better tailor medical recommendations and treatments. However, 
the path forward is neither smooth nor straightforward. Careful atten­
tion is needed to the legal and policy areas implicated by black­box 
medicine, including innovation incentives, privacy, regulation, and 
commercialization. The infrastructure for innovation is not just in da­
tasets and computers; it also encompasses the policies surrounding 
emerging technology. This Article seeks to lay the initial groundwork 
for law and policy surrounding black­box medicine and to begin a 
conversation about how best to shape the legal infrastructure for the 
future of medicine. 
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