
Michigan Law Review Michigan Law Review

Volume 113 Issue 5

2015

Installation Failure: How the Predominant Purpose Test Has Installation Failure: How the Predominant Purpose Test Has

Perpetuated Software’s Uncertain Legal Status Under the Uniform Perpetuated Software’s Uncertain Legal Status Under the Uniform

Commercial Code Commercial Code

Spencer Gottlieb
University of Michigan Law School

Follow this and additional works at: https://repository.law.umich.edu/mlr

 Part of the Commercial Law Commons, Common Law Commons, and the Computer Law Commons

Recommended Citation Recommended Citation
Spencer Gottlieb, Installation Failure: How the Predominant Purpose Test Has Perpetuated Software’s
Uncertain Legal Status Under the Uniform Commercial Code, 113 MICH. L. REV. 739 (2015).
Available at: https://repository.law.umich.edu/mlr/vol113/iss5/4

This Note is brought to you for free and open access by the Michigan Law Review at University of Michigan Law
School Scholarship Repository. It has been accepted for inclusion in Michigan Law Review by an authorized editor
of University of Michigan Law School Scholarship Repository. For more information, please contact
mlaw.repository@umich.edu.

https://repository.law.umich.edu/mlr
https://repository.law.umich.edu/mlr/vol113
https://repository.law.umich.edu/mlr/vol113/iss5
https://repository.law.umich.edu/mlr?utm_source=repository.law.umich.edu%2Fmlr%2Fvol113%2Fiss5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/586?utm_source=repository.law.umich.edu%2Fmlr%2Fvol113%2Fiss5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1120?utm_source=repository.law.umich.edu%2Fmlr%2Fvol113%2Fiss5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=repository.law.umich.edu%2Fmlr%2Fvol113%2Fiss5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.law.umich.edu/mlr/vol113/iss5/4?utm_source=repository.law.umich.edu%2Fmlr%2Fvol113%2Fiss5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mlaw.repository@umich.edu

NOTE

Installation Failure: How the Predominant Purpose
Test Has Perpetuated Software’s Uncertain Legal

Status Under the Uniform Commercial Code

Spencer Gottlieb*

Courts have struggled to uniformly classify software as a good or a service and
have consequently failed to apply a consistent body of law in that domain.
Instead, courts have relied on the predominant purpose test to determine
whether the Uniform Commercial Code (“UCC”) or common law should ap-
ply to a given software contract. This test, designed for traditional goods and
services that do not share software’s complexity or rapid advancement, has
perpetuated the uncertainty surrounding software’s legal status. This Note
proposes that courts adopt the substantial software test as an alternative to
the predominant purpose test. Under this proposal, the American Law Insti-
tute (“ALI”)’s Principles of the Law of Software Contracts would govern
transactions that substantially involve software, and the UCC or common law
would govern all other transactions. This new test would provide greater legal
clarity with only a minimal shift in jurisprudence. No court has yet adopted a
similar test or cited the ALI Principles as authority in a software dispute. The
landscape is ripe for change.

Table of Contents

Introduction . 740
I. Resolving Software Disputes Has Become an Epicenter

of Uncertainty . 742
II. The Predominant Purpose Test Is the Principal Cause

of Software’s Uncertain Legal Status . 745
A. A Deficit of Appellate Guidance Has Produced Lower Court

Uncertainty . 746
B. Courts Consider Improper Factors in Their Predominant

Purpose Analyses . 748
C. Courts Reason by Analogy in Software Disputes Using

Limited and Unsound Precedent . 750
III. The Substantial Software Test Clarifies Software’s

Legal Status While Exacting Only a Small Shift in
Jurisprudence . 752

* J.D. Candidate, May 2015, University of Michigan Law School. I am grateful to
Professor Bruce W. Frier for his guidance and feedback in developing this Note. Special thanks
to the Michigan Law Review Notes Office and the team of citecheckers, pageproofers, and
production managers for their tireless efforts. I dedicate this Note to my parents, Richard and
Alison Gottlieb, and my sister, Jamie, whose love and support have made this journey possible.

739

740 Michigan Law Review [Vol. 113:739

A. The Substantial Software Test and the ALI Principles
Provide a Straightforward Framework for Resolving
Software Disputes . 754

B. The Substantial Software Test Is Superior to Alternative
Reform Efforts and Overcomes Its Limitations 756

Conclusion . 759

Introduction

In 1983, the Soviet Union shot down Korean Air Lines Flight 007, oblit-
erating the aircraft and killing all 269 passengers and crew on board.1 Flight
007 had entered restricted airspace over Russia “likely because of an incor-
rect setting on the plane’s autopilot” software.2 In 2009, Air France Flight
447 crashed into the Atlantic Ocean after pilots failed to respond adequately
when ice crystals outside caused the plane’s autopilot software to disengage.3

And in 2013, “bad software design” contributed to the runway crash that
killed three passengers aboard an Asiana Airlines flight.4 In an age where
software dominates commercial life, it remains unclear what law a court
would apply in contract actions arising out of events like these.

There are two primary options. A court would apply Article 2 of the
Uniform Commercial Code (“UCC” or “Article 2”) if it deemed the
autopilot software to be a good, or it would apply common law if it deemed
the software to be a service.5 The difference is not merely semantic. The
UCC and common law differ in significant ways on “contract formation and
interpretation rules.”6 For instance, a software seller must tender a “perfect”
product free of defects under the UCC7 but must only “substantially” per-
form under common law.8 An aggrieved software buyer is consequently
more likely to recover under the UCC than under common law when a
glitch causes a catastrophic accident.

1. Rob Verger, Newsweek Rewind: When Korean Air Lines Flight 007 Was Shot Down,
Newsweek (July 17, 2014, 5:46 PM), http://www.newsweek.com/newsweek-rewind-when-
korean-air-lines-flight-007-was-shot-down-259653.

2. Id.

3. Nicola Clark, Report Cites Cockpit Confusion in Air France Crash, N.Y. Times, July 6,
2012, at A9, available at http://www.nytimes.com/2012/07/06/world/europe/air-france-flight-
447-report-cites-confusion-in-cockpit.html.

4. Matthew L. Wald, Airline Blames Bad Software in San Francisco Crash, N.Y. Times,
Apr. 1, 2014, at A14, available at http://nytimes.com/2014/04/01/us/asiana-airlines-says-second
ary-cause-of-san-francisco-crash-was-bad-software.html.

5. The UCC applies only to “transactions in goods.” See U.C.C. § 2-102 (2013).

6. James J. White & Robert S. Summers, Uniform Commercial Code: Revised Ar-
ticle 1 and Amended Article 2—Substance and Process Supplement § 2-2, at 54 (2005).

7. U.C.C. § 2-601.

8. See, e.g., Jacob & Youngs, Inc. v. Kent, 129 N.E. 889 (N.Y. 1921) (holding that a
builder is not liable for failing to install a particular brand of piping when the builder used a
similar brand of equal quality).

March 2015] Installation Failure 741

Courts routinely apply the predominant purpose test9 to software con-
tracts to determine if the UCC applies.10 Under that test, Article 2 governs
when the transaction at issue is predominantly for goods, while common law
applies when the transaction is predominantly for services.11 The U.S. Su-
preme Court has yet to rule whether software is a good or service, and
“there is no national consensus” on the issue.12 And yet despite its preva-
lence, the predominant purpose test has failed to assist courts in adjudicat-
ing software contract disputes. As a result, software’s legal status remains a
fundamental yet unanswered question.

This is the first piece of commentary to focus exclusively on the pre-
dominant purpose test’s limitations in software disputes. It is also the first to
present a practical replacement: courts should adopt the substantial software
test, which would produce tremendous benefits to the legal community
while exacting only a small shift in jurisprudence. The substantial software
test directs courts away from classifying software contracts as goods or ser-
vices transactions and asks only whether software is “substantial” in a con-
tract. Courts would then apply the American Law Institute (“ALI”)’s
Principles of the Law of Software Contracts in cases where software is substan-
tial and revert to the UCC or common law for all other contracts. “The
Principles are not ‘law,’ of course, unless a court adopts a provision. Courts
can also apply the Principles as a ‘gloss’ on the common law, UCC Article 2,
or other statutes.”13 For courts even to acknowledge the ALI Principles in
this context would, in itself, be a giant step forward.

The substantial software test and ALI Principles would bring needed
clarity and predictability to software disputes. Almost two million American
jobs and $300 billion of the United States’ GDP depend on the software

9. Courts vary in using the terms predominant and predominate in reference to this test.
There is no legal distinction between the two, although Garner’s Modern American Usage de-
scribes predominate as a “needless variant” of predominant. Bryan A. Garner, Garner’s
Modern American Usage 650 (3d ed. 2009).

10. See 1 E. Allan Farnsworth, Farnsworth on Contracts § 1.9, at 44 (3d ed. 2004)
(“Courts usually determine whether a transaction is one in goods, services, or land by looking
for the ‘predominant factor’ of the contract.”); 1 Howard O. Hunter, Modern Law of
Contracts § 9:11, at 519–20 (2014) (“The general test for U.C.C. coverage is to determine
whether the primary purpose and main thrust of the contract is the sale of goods or
services.”).

11. See supra note 10. The UCC is not a statute and has no independent legal force, but
every state except Louisiana has approved a variant of Article 2. See 24 Dian Tooley-
Knoblett & David Gruning, Louisiana Civil Law Treatise § 1:4 (2012).

12. See Richard Raysman & Peter Brown, Applicability of the UCC to Software Transac-
tions, N.Y. L.J., Mar. 8, 2011, at 5.

13. Bob Hillman & Maureen O’Rourke, American Law Institute Approves the Principles of
the Law of Software Contracts, Concurring Opinions (June 2, 2009), http://www.concurring
opinions.com/archives/2009/06/american-law-institute-approves-the-principles-of-the-law-of-
software-contracts.html#sthash.skNyh8AP.dpuf.

742 Michigan Law Review [Vol. 113:739

industry.14 Too much rests on software’s legal status for this issue to remain
unsettled.

This Note argues that courts should abandon the predominant purpose
test in determining what law governs software contracts and instead utilize
the substantial software test. Part I discusses software’s uneasy relationship
with the UCC and highlights what separates software contracts from other
transactions. Part II elaborates on how the predominant purpose test has
prompted courts to misapply multifactor balancing tests and haphazardly
reason by analogy. Part III proposes the substantial software test and the ALI
Principles as an alternative to the predominant purpose test and as an im-
provement on earlier efforts to clarify software’s legal status.

I. Resolving Software Disputes Has Become
an Epicenter of Uncertainty

The predominant purpose test is favored for its versatility and simplic-
ity,15 but the software setting constrains its effectiveness. The test’s precise
phrasing varies among courts but invariably focuses on whether a contract is
predominantly a transaction in goods or in services.16 The UCC governs a
contract that is primarily for goods, even if the contract also includes ser-
vices, and the common law governs a contract that is primarily for services,
even if the contract also includes goods.17 The test has been so widely
adopted in contract law that commentators have evaluated its potential use
in other areas of law.18

Understanding why the predominant purpose test is inappropriate for
software contracts first requires looking at the UCC’s scope. The UCC de-
fines goods as “all things (including specially manufactured goods) which

14. See Software Industry Facts & Figures, Bus. Software Alliance, http://www.bsa.org/
country/public%20policy/~/media/files/policy/security/general/sw_factsfigures.ashx (last vis-
ited Oct. 22, 2014).

15. See, e.g., R. Alan Pritchard, The Predominant Factor Test Under the Uniform Commer-
cial Code, Tenn. B.J., July 2001, at 23, 26–28 (describing the test’s application in a Tennessee
appeals court case).

16. See Bonebrake v. Cox, 499 F.2d 951, 960 (8th Cir. 1974).

17. Id. at 958–60. A Georgia appeals court offered the following iteration: “In a hybrid
contract for both goods and services, where the predominant element is the furnishing of
services, the Georgia UCC is inapplicable.” McCombs v. S. Reg’l Med. Ctr., Inc., 504 S.E.2d
747, 749 (Ga. Ct. App. 1998). The Illinois Supreme Court approached the issue from the
opposite angle, holding that the UCC is applicable where “a mixed contract is predominantly
for goods and only incidentally for services.” Brandt v. Bos. Scientific Corp., 792 N.E.2d 296,
303 (Ill. 2003).

18. E.g., Adam Linkner, How Salazar v. Buono Synthesizes the Supreme Court’s Establish-
ment Clause Precedent into a Single Test, 25 Emory Int’l L. Rev. 57, 59 (2011) (describing the
Supreme Court’s use of the predominant purpose test in a religious freedom case); Michael S.
Kruse, Note, Missouri’s Interfacing of the First Amendment and the Right of Publicity: Is the
“Predominant Purpose” Test Really That Desirable?, 69 Mo. L. Rev. 799, 810, 815–16 (2004)
(suggesting that the predominant purpose test may “have the effect of chilling a great deal of
artistic expression” if adopted in First Amendment cases).

March 2015] Installation Failure 743

are movable at the time of identification to the contract for sale.”19 This
includes obvious subsets like furniture, toaster ovens, and baseball gloves—
standardized products that are easy to conceptualize and evaluate. By con-
trast, “where the subject matter is intangible, dynamic, and protean,” as in
the case of software, “proper classification becomes much more problem-
atic.”20 Determining whether the UCC or common law applies to a software
lawsuit theoretically should be simple under the binary predominant pur-
pose test, but courts have been unable to use this test uniformly to classify
software transactions as involving either goods or services.

Software’s amorphous character has plagued courts for decades. One
author contends that “[t]he legal definition of software first became an issue
in 1969 when IBM . . . announced that it was separating the pricing of its
software and services from the pricing of its hardware.”21 The government
and courts then had to determine whether “software was tangible personal
property and therefore taxable, or intangible intellectual property not sub-
ject to taxation.”22

Software has given rise to a host of other debates in subsequent years.
Commentators disagree over whether software is a good or a service;23

whether, if software is neither a good nor a service, it is instead informa-
tion;24 whether software should be subject to federal copyright law rather
than state contract law;25 and whether software transactions involve licenses
rather than sales.26 This Note reframes these questions by focusing instead

19. U.C.C. § 2-105(1) (2013).

20. Nancy S. Kim, Expanding the Scope of the Principles of the Law of Software Contracts
to Include Digital Content, 84 Tul. L. Rev. 1595, 1597 (2010).

21. James A. Mogey, Software as UCC Goods: A Critical Look, 34 How. L.J. 299, 299–300
(1991).

22. Id. at 300.

23. Compare Lorin Brennan, Why Article 2 Cannot Apply to Software Transactions, 38
Duq. L. Rev. 459 (2000) (arguing that software does not fall within the scope of the UCC),
and Holly K. Towle, Enough Already: It Is Time to Acknowledge that UCC Article 2 Does Not
Apply to Software and Other Information, 52 S. Tex. L. Rev. 531 (2011) (same), with Sarah
Green & Djakhongir Saidov, Software as Goods, 2007 J. Bus. L. 161, 161 (arguing that software
should be classified as a good under the U.K. Sale of Goods Act 1979 and the U.N. Convention
on Contracts for the International Sale of Goods), and Bonna Lynn Horovitz, Note, Computer
Software as a Good Under the Uniform Commercial Code: Taking a Byte Out of the Intangibility
Myth, 65 B.U. L. Rev. 129, 162 (1985) (“[S]oftware should be given the status of a good for
purposes of applying Article 2 of the UCC.”).

24. See Brennan, supra note 23, at 465–69 (arguing that a sale of software is not a sale of
goods but rather is “a license of information”).

25. See Jean Braucher, Contracting Out of Article 2 Using a “License” Label: A Strategy that
Should Not Work for Software Products, 40 Loy. L.A. L. Rev. 261, 271–75 (2006) (discussing the
question of whether state contract law or federal copyright law—or both—should apply to
copy and use restrictions in software license agreements).

26. Compare Vernor v. Autodesk, Inc., 621 F.3d 1102, 1111 (9th Cir. 2010) (holding that
a software transaction is a license, not a sale of a copy, if the software agreement “(1) specifies
that the user is granted a license; (2) significantly restricts the user’s ability to transfer the
software; and (3) imposes notable use restrictions”), with UMG Recordings, Inc. v. Augusto,
628 F.3d 1175, 1177 (9th Cir. 2011) (holding that the distribution of free CDs “effect[ed] a

744 Michigan Law Review [Vol. 113:739

on the process of deciding what law should apply to software contracts. Only
when courts have a clear framework for interpreting software contracts will
parties know how to design their transactions.

Four issues common to all software contracts shed light on the predom-
inant purpose test’s limitations. First, speaking of “software” is like speaking
of “food.” Two randomly selected examples are bound to be drastically dif-
ferent. Even the definition of software varies greatly from source to source.
One possibility—that software is “a series of step-by-step instructions which
tell the computer exactly what to do”27—is a definition “used in most of the
cases and by the commentators.”28 By contrast, Merriam-Webster defines
software in broader terms, as “the entire set of programs, procedures, and
related documentation associated with a system and especially a computer
system.”29 These definitional variations are legally significant. Software mak-
ers, for example, can patent a program that constitutes a “design or a physi-
cal invention” but not a step-by-step “process implemented on a
computer.”30

Second, software varies in scope and power. Consumers who purchase
Angry Birds for their tablet device have different expectations of how that
product will function than do the purchasers of custom billing software.
Developing legal uniformity among the vast swath of products lumped
under the umbrella term of “software” has proved exceedingly difficult.31

Third, unlike typical goods and services that retain a constant or similar
character over time, software undergoes rapid and frequent change. In 1950,
Alan Turing envisioned a machine that could simulate human thought, a
radical conception at the time.32 Scholars today ask not only whether com-
puters can think and speak like humans33 but also whether software can have

sale of the discs to the recipients,” who were then free to dispose of the CDs without infringing
the distributor’s copyright).

27. Mogey, supra note 21, at 308 (quoting Black’s Law Dictionary 633 (5th ed. 1983))
(internal quotation marks omitted).

28. Id. (footnote omitted).

29. Webster’s Third New International Dictionary of the English Language
Unabridged 130a (2002).

30. See Adi Robertson, Supreme Court Rules Software Patents That Cover “Abstract Ideas”
Are Invalid, Verge (June 19, 2014, 11:07 AM), http://www.theverge.com/2014/6/19/5824144/
supreme-court-rules-software-patents-that-cover-abstract-ideas-are.

31. Jeffrey B. Ritter, Software Transactions and Uniformity: Accommodating Codes Under
the Code, 46 Bus. Law. 1825, 1852–53 (1991) (noting the difficulty in harmonizing “different
results” when “the facts of two or more [software] cases were nearly comparable”).

32. See A.M. Turing, Computing Machinery and Intelligence, 59 Mind 433, 433 (1950).

33. Apple’s iPhone 4s model introduced the Siri app, a software program that can re-
spond to verbal questions on topics ranging from the weather in Phoenix to the nearest super-
market. See Siri: Your Wish Is Its Command, Apple, http://www.apple.com/ios/siri/ (last visited
Oct. 22, 2014).

March 2015] Installation Failure 745

moral responsibility.34 Software has become so powerful that a single mal-
function, malicious attack, or instance of human error could irreparably
damage global commerce.35

Finally, software transactions are typically “mixed” transactions, involv-
ing both tangible goods and intangible services like installation, support,
and maintenance. Courts have applied Article 2 “even in cases where it is
fairly debatable whether there are any goods at all in the transaction,” par-
tially because of an inability to differentiate between software goods and
services.36 Courts’ difficulty with these mixed transactions has led to a “lack
of uniformity” and “an increasing lack of clarity” for the legal community.37

These characteristics illustrate why software contracts cannot fit within
the confines of traditional contract law. Software products barely resemble
one another, they evolve faster than do products in other industries, and
they often adjoin other goods and services in hybrid contracts. The conven-
tional predominant purpose test analysis does not account for these quali-
ties. Against this backdrop, it is no surprise that the predominant purpose
test is “[bound to] mislead, or eventually lead[] to . . . ‘pretty awful results’ ”
when applied to software contracts.38

II. The Predominant Purpose Test Is the Principal Cause of
Software’s Uncertain Legal Status

The predominant purpose test’s flaws predate software’s meteoric rise in
the 1990s.39 Scholarship in the Harvard Law Review outlined the test’s weak-
nesses in 1982, well before software became ubiquitous in commercial life.40

34. Merel Noorman, Computing and Moral Responsibility, Stan. Encyclopedia Phil.,
http://plato.stanford.edu/entries/computing-responsibility/ (last updated Apr. 18, 2014) (re-
butting claims that software lacks “causal contribution” to events, cannot “consider the out-
comes” of its actions, and has no independent “freedom to act”).

35. See, e.g., Retro Report, The Day the Lights Went Out, N.Y. Times (Nov. 11, 2013),
http://www.nytimes.com/video/us/100000002544427/the-day-the-lights-went-out.html (con-
necting human failure to activate software with the massive 2003 power blackout in the United
States and Canada).

36. 1 William D. Hawkland & Linda J. Rusch, Hawkland’s Uniform Commercial
Code Series § 2-102:2 (Frederick H. Miller ed., 2014), available at Westlaw.

37. Ritter, supra note 31, at 1831.

38. Towle, supra note 23, at 558 (quoting K.N. Llewellyn, The First Struggle to Unhorse
Sales, 52 Harv. L. Rev. 873, 873 (1939)).

39. See Note, Disengaging Sales Law from the Sale Construct: A Proposal to Extend the
Scope of Article 2 of the UCC, 96 Harv. L. Rev. 470, 477–78 (1982).

40. Id. at 478. Although computers “start[ed] to become a part of daily life for some
office workers” in the 1980s, the following decade ushered in an “era of fax/modems, email,
the new online world, and dazzling multimedia games and educational software.” A History of
Windows, Windows, http://windows.microsoft.com/en-us/windows/history#T1=era4 (last vis-
ited Oct. 22, 2014). The world was introduced to Java, “the most popular computer program-
ming language,” in 1995. Francis M. Allegra & Daniel B. Garrie, Plugged In:
Guidebook to Software and the Law § 2:2 (2014), available at Westlaw. A researcher at the
European Organization for Nuclear Research created the precursor of the World Wide Web in
1990. Id. § 3:2(B).

746 Michigan Law Review [Vol. 113:739

The predominant purpose test subjects nontraditional sales, like contracts
for both engineering services and construction materials, to “outdated” and
“inappropriate” common law; it motivates courts to “distort the facts” so
that the UCC will govern a transaction; it induces courts to engage in “un-
structured” balancing tests; and it overlooks that a transaction will reflect
the UCC’s “sale paradigm” to varying degrees as the transaction
progresses.41

These limitations are serious enough in isolation; software’s characteris-
tics only exacerbate their effect.42 Software is more complex, more abstract,
and undergoes more rapid advancement than virtually any other product.43

“Computer programs are the most intricate, delicately balanced and finely
interwoven of all the products of human industry to date.”44 Unlike for
boats or bridges, “any architecture, design, or diagram we create for software
is essentially inadequate” because it omits fundamental details that render
blueprints useless.45 And although roads have been built “for thousands of
years” and have remained mostly constant in design, the first widely used
enterprise application framework appeared in 1998 and is now obsolete.46

A half century of case law has highlighted how the predominant pur-
pose test is not merely problematic but also unworkable for software dis-
putes. Section II.A examines how a lack of appellate court guidance on
software’s legal status has caused ongoing judicial uncertainty in using the
predominant purpose test. Section II.B then explains why multifactor bal-
ancing tests, often used within predominant purpose analyses, have pro-
duced significantly worse outcomes in software cases than in other disputes.
Finally, Section II.C explores the common law tradition of reasoning by
analogy to illustrate its deleterious effects on software law.

A. A Deficit of Appellate Guidance Has Produced Lower Court Uncertainty

The predominant purpose test has perpetuated judicial uncertainty in
software disputes. In 2002, then–Judge Sotomayor of the Second Circuit re-
mained unsure of whether “U.C.C. Article 2 . . . applies to the licensing of
software that is downloadable from the Internet.”47 In Specht v. Netscape
Communications Corp., the court stated that it “need not decide today

41. Note, supra note 39, at 478; see Lincoln Pulp & Paper Co. v. Dravo Corp., 436 F.
Supp. 262, 275 (D. Me. 1977).

42. George Stepanek, Software Project Secrets: Why Software Projects Fail
7–21 (2005) (presenting twelve “differences between software development and other com-
mon business endeavors”).

43. Id. at 8–13.

44. James Gleick, Chasing Bugs in the Electronic Village, in What Just Happened: A
Chronicle from the Information Frontier 15, 19 (2002).

45. Stepanek, supra note 42, at 11.

46. Id. at 13.

47. Specht v. Netscape Commc’ns Corp., 306 F.3d 17, 29 n.13 (2d Cir. 2002).

March 2015] Installation Failure 747

whether” the UCC applied to downloadable software licenses since, “for pre-
sent purposes,” both approaches would lead to the same outcome.48 As a
result, the case did not instruct lower courts how to rule in software cases
when the decision to apply sales law or common law would be outcome
determinative.

The Second Circuit in Specht should have taken a more assertive stance
on software’s legal status. The court recognized that some courts were indis-
criminately choosing whether to apply the UCC to software contracts in-
volving other products.49 Judge Sotomayor even quoted a district court
opinion asserting that “Article 2 technically does not, and certainly will not
in the future, govern software licenses, but for the time being, the Court will
assume that it does.”50 The Second Circuit’s refusal to apply the predomi-
nant purpose test in Specht deprived lower courts of a signal case containing
clear guidance. When the circuit courts forgo deciding these issues—even
where doing so would create a circuit split—the district courts are left with
little direction and few boundaries.51

This judicial uncertainty comes at a significant cost. A business’s duty to
collect taxes from online sales can hinge on whether those sales involve
goods.52 Court decisions illustrate that a given software product will not
uniformly be treated as a good or a service, and thus software sellers may
not collect sales taxes when they are required to do so. “[A] four figure tax
liability” resulting from this confusion “can be enough to put [a small com-
pany] out of business.”53 This example demonstrates a larger concern:
“Software transferors and copyholders of all types can perform their various
roles confidently and efficiently only after the clarification of applicable
rules.”54 Courts should finally acknowledge that the predominant purpose
test is unfit for software contracts instead of perpetuating this unworkable
regime.

48. Id.

49. Id. (“Some courts have also applied Article 2, occasionally with misgivings, to sales of
off-the-shelf software in tangible, packaged formats.”).

50. Id. (quoting i.Lan Sys. v. Netscout Serv. Level Corp., 183 F. Supp. 2d 328, 332 (D.
Mass. 2002)) (internal quotation marks omitted).

51. See, e.g., Phoenix Solutions, Inc. v. Sony Elecs., Inc., 637 F. Supp. 2d 683, 695 (N.D.
Cal. 2009) (denying summary judgment on the grounds that the predominant purpose of a
software contract was an “unresolved factual dispute[]”).

52. See New Tax Rules for Sales of Computers, Software, Digital Goods and Services Takes
Effect March 28, Wash. Tech. Industry Ass’n (Mar. 19, 2013), http://www.washingtontechno
logy.org/new-tax-rules-for-sales-of-computers-software-digital-goods-and-services-takes-ef
fect-march-28/.

53. Id.

54. Principles of the Law of Software Contracts 1, 1 (2010) [hereinafter ALI Principles].

748 Michigan Law Review [Vol. 113:739

B. Courts Consider Improper Factors in Their Predominant
Purpose Analyses

Multifactor balancing tests also hamper courts’ predominant purpose
analyses in software disputes. Courts often utilize such multifactor tests to
settle standard-based questions, such as whether a contract is “predomi-
nantly” for goods or services. Balancing tests provide courts with a high
degree of discretion, which can make the tests “unavoidably vague” and
“loosely defined,” leading to “inconsistent results.”55

These shortcomings are particularly true in software cases because
courts struggle to conceptualize how software contracts operate, such as
when courts weigh how “incidental” or “ancillary” services or goods are to a
given software contract.56 The UCC does not govern a contract that “inci-
dentally involves the supply of goods,” nor does it exclude a contract that
“incidentally requires the furnishing of services.”57 The more incidental
goods are to a contract, however, the more likely it is that services are pre-
dominant and vice versa. The inherent vagueness of what can be considered
incidental is amplified in the software realm. Courts do not simply disagree
about how much is too much; they are inconsistent about what they are
measuring and against what benchmark.

Wachter Management Co. v. Dexter & Chaney, Inc. demonstrates that
measuring incidental services is a poor balancing factor in software cases.58

The Kansas Supreme Court in that case determined that the sale of project-
management software primarily involved a sale of goods and that the seller’s
installation, maintenance, and ongoing training were “incidental” to the
contract because the services “would not have been necessary” without the
purchase of the management software.59 Following this logic, goods are inci-
dental to a contract when they are unnecessary without the purchase of cer-
tain services. Wachter therefore suggests that goods and services that are
both necessary to a contract are also both incidental.

The fallacy in this definition is obvious when, for instance, a consumer
purchases a cable box and television-station package for one price. Surely
the cable box is necessary for the consumer to enjoy the television stations,
but the television stations are also necessary for the consumer to enjoy the

55. David Crump, Takings by Regulation: How Should Courts Weigh the Balancing Fac-
tors?, 52 Santa Clara L. Rev. 1, 2–4 (2012) (describing the Supreme Court’s balancing test
for property “takings”).

56. See, e.g., Lake & Piepkow Farms v. Purina Mills, Inc., 955 F. Supp. 791, 794 (W.D.
Mich. 1997); Kline Iron & Steel Co. v. Gray Commc’ns Consultants, Inc., 715 F. Supp. 135,
139 (D.S.C. 1989); Neibarger v. Universal Coops., Inc., 486 N.W.2d 612, 622 (Mich. 1992).

57. See 2 Farnsworth on Contracts, supra note 10, § 6.6, at 142–43.

58. 144 P.3d 747 (Kan. 2006).

59. Wachter, 144 P.3d at 751. This was the only basis for the court’s determination that
the services were incidental. See id. Services can still constitute a contract’s predominant pur-
pose even if the software involved is incidental. See Mortg. Plus, Inc. v. DocMagic, Inc., No.
03-2582-GTV-DJW, 2004 WL 2331918, at *3–4 (D. Kan. Aug. 23, 2004).

March 2015] Installation Failure 749

cable box. Both the cable box and the television stations would be incidental
according to Wachter, leaving one question: “Incidental to what?”

Some courts entirely fail to explain why goods or services are incidental
to a software contract.60 One court held, without explanation, that services
were ancillary to a particular software contract,61 while another court listed a
host of contract principles before summarily “conclud[ing], as a matter of
law, that the contract was predominantly for goods and only incidentally for
services.”62 This judicial side step is common because, while segregating
software into goods and services is challenging, determining their relative
weight is nearly impossible.

Courts also give undue weight to the cost or compensation structure of
software agreements.63 One party’s cost is typically another party’s compen-
sation. They are opposite sides of the same coin. The allocation of costs
between goods and services can indicate whether goods or services
predominate nonsoftware contracts, and for this reason “courts have placed
great weight on the . . . manner in which the contract was billed.”64

Unlike products in traditional contracts, software often merges the con-
tract’s goods and services.65 The installation of a bowling alley, for example,
is wholly separate from the bowling alley itself.66 It is plausible to assign
different cost values to the installation and the bowling alley since they are
conceptually distinct. The installation ends where the finished product be-
gins. Parties can argue over the precise allocation of costs, but all stakehold-
ers are operating on common ground.

Software contracts do not involve distinct goods and services. Software
is “a codification of the behaviors that the programmers and users want to
take place.”67 The good’s purpose is to capture and repeat the service. As a
result, determining whether a project’s costs should be allocated more heav-
ily to the goods or services portion of a software contract will necessarily
produce an arbitrary result.68 Courts’ use of software-agreement cost or

60. See, e.g., Surplus.com, Inc. v. Oracle Corp., No. 10-CV-03510, 2010 U.S. Dist. LEXIS
136254, at *15 (N.D. Ill. Dec. 23, 2010); Dealer Mgmt. Sys. v. Design Auto. Grp., Inc., 822
N.E.2d 556, 561 (Ill. App. Ct. 2005).

61. Surplus.com, Inc., 2010 U.S. Dist. LEXIS 136254, at *15.

62. Dealer Mgmt. Sys., 822 N.E.2d at 561.

63. See, e.g., Fab-Tech, Inc. v. E.I. DuPont de Nemours & Co., 311 F. App’x 443, 445 (2d
Cir. 2009); Advent Sys. Ltd. v. Unisys Corp., 925 F.2d 670, 676 (3d Cir. 1991); Executone of
Columbus, Inc. v. Inter-Tel, Inc., 665 F. Supp. 2d 899, 908 (S.D. Ohio 2009); TK Power, Inc. v.
Textron, Inc., 433 F. Supp. 2d 1058, 1062 (N.D. Cal. 2006); Micro-Managers, Inc. v. Gregory,
434 N.W.2d 97, 100 (Wis. Ct. App. 1988).

64. Raysman & Brown, supra note 12.

65. Id.; cf. Green & Saidov, supra note 23, at 161 (“[The] unique characteristics [of
software] mean that it is not truly analogous to any conventional chattel with which the law is
familiar.”).

66. Bonebrake v. Cox, 499 F.2d 951, 960 (8th Cir. 1974).

67. See Stepanek, supra note 42, at 10.

68. See supra notes 60–62 and accompanying text.

750 Michigan Law Review [Vol. 113:739

compensation structures further illustrates how multifactor balancing tests
negatively influence the predominant purpose test.

C. Courts Reason by Analogy in Software Disputes Using Limited
and Unsound Precedent

Reasoning by analogy is a staple of common law jurisprudence but a
significant factor in why courts should replace the predominant purpose test
in software cases. Courts’ ability to analogize to and distinguish from cases is
only as effective as the precedent that feeds it. Advent Systems Ltd. v. Unisys
Corp. exemplifies how one opinion can poison the well of precedent.69 In
that case, the Third Circuit held that an agreement involving an electronic
document-management system was primarily a sale of goods.70 The court
recognized that the predominant purpose test “has been criticized” but saw
“no reason to depart from that practice here.”71 Scholars have attacked the
court’s subsequent analysis for misunderstanding federal copyright preemp-
tion and conflating a physical copy with a copyright.72 This misapprehension
of copyright law heavily influenced the court’s reasoning.

Advent Systems then morphed into a landmark decision for courts using
the predominant purpose test to resolve software disputes. Courts across the
country cited the decision favorably.73 In Triple Point Technology, Inc. v.
D.N.L. Risk Management, Inc., for example, a district court distinguished
“ownership” of a computer program from the right to resale discussed in
Advent Systems.74 But the court in Advent Systems misunderstood the right
to resale, and so the Triple Point Technology court used faulty reasoning to
reach its holding. Decisions that cite Triple Point Technology perpetuate this
cycle.

Both software and nonsoftware cases suffer from this snowball effect in
which poorly reasoned decisions beget more of the same. It is an unavoida-
ble cost of a common law system. But software cases are particularly
prejudiced because the subject matter is so broad that courts often cannot
find relevant precedent. The Ninth Circuit held in one case that a software
package was predominantly a good notwithstanding ancillary services, such
as “training, repair services, and system upgrading.”75 The court did not

69. 925 F.2d 670 (3d Cir. 1991).

70. Advent Sys. Ltd., 925 F.2d at 676.

71. Id.

72. See, e.g., Brennan, supra note 23, at 549–53.

73. See Nat’l Data Payment Sys., Inc. v. Meridian Bank, 212 F.3d 849, 856 (3d Cir. 2000);
Micro Data Base Sys., Inc. v. Dharma Sys., Inc., 148 F.3d 649, 654–55 (7th Cir. 1998); Rottner
v. AVG Techs. USA, Inc., 943 F. Supp. 2d 222, 230 (D. Mass. 2013); Youngtech, Inc. v. Beijing
Book Co., No. A-1788-05T3, 2006 WL 3903976, at *5 (N.J. Super. Ct. App. Div. Dec. 29,
2006); Smart Online, Inc. v. Opensite Techs., Inc., No. 01-CVS-09604, 2003 WL 21555316, at
*3 (N.C. Super. Ct. June 17, 2003).

74. Triple Point Tech., Inc. v. D.N.L. Risk Mgmt., Inc., No. CIV.A.99-4888WHW, 2000
WL 1236227, at *7 (D.N.J. Apr. 11, 2000).

75. RRX Indus. v. Lab-Con, Inc., 772 F.2d 543, 546 (9th Cir. 1985).

March 2015] Installation Failure 751

explain why the services were ancillary to the contract,76 and one commen-
tator criticized the court for taking “a less rigorous approach” to the pre-
dominant purpose test.77

Courts that do take a more rigorous approach in software cases do not
necessarily fare better. The plaintiffs in a proposed federal class action al-
leged that antivirus software “consistently reported that a tested PC suffered
from multiple problems regardless of its actual health.”78 The court, in ap-
plying Delaware state law, examined two previous Delaware decisions that
dealt with software disputes: one where the court held that a computer hard-
ware lease was predominantly a good79 and another where the court consid-
ered customized software to be a service.80 The court applied the
predominant purpose test while conceding that the former case was “readily
distinguishable” and that the latter bore “no resemblance” to the software at
issue.81

It is not surprising that precedent often bears little resemblance to new
cases; “software” is a vast umbrella term covering navigation systems, billing
systems, temperature-control systems, iPhone apps, word-processing pro-
grams, and much more. Courts that reason by analogy in software disputes
do not have enough relevant, sound, and useful decisions for comparison.

Encouragingly, courts may finally be realizing that reasoning by analogy
and the predominant purpose test are unsuitable for software cases. In 2009,
the chief justice of the Supreme Court of Indiana noted in Conwell v. Gray
Loon Outdoor Marketing Group, Inc. that it would be easy to assume “that
customized software is a service while pre-made software is a good,” but he
quickly cautioned that, “when courts try to pour new wine into old legal
bottles, we sometimes miss the nuances.”82 Conwell’s facts were markedly
simpler than those in most software cases, and the court “happily” acknowl-
edged that the case did not “include any of the aspects . . . that have compli-
cated resolution of the U.C.C.’s applicability” elsewhere.83 Still, the court’s
skepticism of software precedent was a welcome step forward. Other courts
should heed the Conwell court’s wisdom and avoid reasoning by analogy in
software disputes.

76. Id.

77. Lawrence B. Levy & Suzanne Y. Bell, Software Product Liability: Understanding and
Minimizing the Risks, 5 High Tech. L.J. 1, 5 (1990); see also Brennan, supra note 23, at 569
(noting the court’s failure to explain why the sales aspect predominated the contract).

78. Rottner, 943 F. Supp. 2d at 225.

79. Id. at 229–30 (citing Neilson Bus. Equip. Ctr., Inc. v. Monteleone, 524 A.2d 1172
(Del. 1987)).

80. Id. (citing Wharton Mgmt. Grp. v. Sigma Consultants, Inc., 1990 WL 18360 (Del.
Super. Ct. Jan. 29, 1990), aff’d, 582 A.2d 936 (Del. 1990) (unpublished table decision)).

81. Id. at 230.

82. 906 N.E.2d 805, 812 (Ind. 2009).

83. Conwell, 906 N.E.2d at 811.

752 Michigan Law Review [Vol. 113:739

III. The Substantial Software Test Clarifies Software’s Legal
Status While Exacting Only a Small Shift

in Jurisprudence

The predominant purpose test has failed to provide certainty, cohesion,
or an underlying logic in software law. Courts should therefore abandon this
test in software disputes and adopt a practical alternative: the substantial
software test. The substantial software test answers procedurally when certain
law should apply and substantively what law should apply. Under this test,
courts would apply the ALI’s Principles of the Law of Software Contracts
when software constitutes a substantial portion of the contract. Courts
would revert to applying common law or the UCC in all other cases.

The substantial software test’s design is mindful of earlier unsuccessful
attempts to improve software law. By the middle of the twentieth century,
courts and practitioners encountered “chaos” in “trying to determine which
contract law” applied in a particular dispute.84 A campaign began to revise
Article 2 by separating it into three parts with a common core of provisions,
known as the “hub-and-spoke” approach, but the effort failed to garner
popular support.85 No state adopted this “revised Article 2.”86

The Uniform Computer Information Transactions Act (“UCITA”) soon
emerged as an alternative proposal that focused exclusively on “information
transactions,” including software contracts.87 But UCITA was heavily po-
larizing among the software community.88 Opponents denounced it as “an
extreme measure being advanced by the software industry”89 that contra-
vened “traditional copyright law”90 and altered UCC warranties to favor
software producers.91 Thirty-three state attorneys general went on record as
opposing UCITA, expressing fears that “consumers under UCITA [would]
lose many rights that generally accompany the sales of goods,” such as the

84. Towle, supra note 23, at 535; see also text accompanying note 21.

85. Bruce W. Frier & James J. White, The Modern Law of Contracts 205–06 (3d
ed. 2012) (“[A]dvocates for the revision were weak and unenthusiastic, while the opponents
were many and more vigorous”).

86. Towle, supra note 23, at 533 n.2.

87. See Unif. Computer Info. Transactions Act (2002), available at http://www
.uniformlaws.org/shared/docs/computer_information_transactions/ucita_final_02.pdf.

88. White & Summers, supra note 6, at 53 (“Certain groups, particularly consumer
advocates, librarians and some licensees regard UCITA as akin to the Communist Manifesto,
while others, particularly licensors, regard it as more sacred than the Old Testament.”).

89. David A. Szwak, Uniform Computer Information Transactions Act [U.C.I.T.A.]: The
Consumer’s Perspective, 63 La. L. Rev. 27, 51 (2002).

90. Deborah Tussey, UCITA, Copyright, and Capture, 21 Cardozo Arts & Ent. L.J. 319,
332 (2003).

91. Braucher, supra note 25, at 271; see also Ajay Ayyappan, Note, UCITA: Uniformity at
the Price of Fairness?, 69 Fordham L. Rev. 2471, 2505–10 (2001) (discussing concerns of
UCITA’s opponents that the statute would weaken consumer warranty protections).

March 2015] Installation Failure 753

ability to use a product “where and how [consumers] wish.”92 The state
legislatures in Iowa, North Carolina, West Virginia, and Vermont even ap-
proved “bomb-shelter” statutes that prohibited courts from applying UCITA
in contract disputes.93 Only two states, Maryland and Virginia, ultimately
approved UCITA legislation.94

In the wake of revised Article 2 and UCITA, the ALI attempted to end
the long-standing debate over software’s legal status when it approved the
ALI Principles in 2009.95 The ALI had successfully “employed the ‘Principles’
approach before in projects” involving corporate governance and family
dissolution.96

The ALI Principles are essentially a nonbinding user’s manual on how
best to apply software law. The Principles “account[] for the case law and
recommend[] best practices, without unduly hindering the law’s adaptabil-
ity to future developments.”97 Unlike a Restatement project, the Principles
outline “the ‘black letter’ rather broadly, with substantial elaboration in
Comments.”98 They focus less on regulating the transfer of software than on
encouraging ex ante disclosure of facts, terms, and postcontract intentions.99

They are not designed for legislative adoption but instead to “give guidance
to lawyers, persons in the software business or who rely on software, and
eventually common-law judges and legislators.”100 The Principles provide a
software-specific approach to contract disputes and a way forward from the
archaic goods–services debate.

This Part promotes the substantial software test and the ALI Principles
as a permanent replacement for the predominant purpose test and sales or
common law. Section III.A assesses the ALI Principles’s substantive strength
and suggests how courts can capitalize on this strength with the substantial
software test. Section III.B rebuts salient counterarguments to adopting the
substantial software test.

92. Letter from Nat’l Ass’n of Attorneys Gen. to Carlyle C. Ring, Ober, Kaler, Grimes &
Shriver (Nov. 13, 2001), available at http://www.ucita.com/pdf/Nov132001_Letter_from_AGs_
to_Carlyle_Ring.pdf.

93. Nim Razook, The Politics and Promise of UCITA, 36 Creighton L. Rev. 643, 644 n.4
(2003); NCCUSL’s Withdrawal of Active Support from UCITA, Americans for Fair Elec-
tronic Com. Transactions (Aug. 4, 2003), http://affect.ucita.com/pdf/AFFECT_8-04-
03_PressRelease.pdf.

94. See Md. Code Ann., Com. Law §§ 22-101 to -816 (LexisNexis 2013); Va. Code Ann.
§§ 59.1-501.1 to -509.2 (2014).

95. Robert A. Hillman & Maureen A. O’Rourke, Principles of the Law of Software Con-
tracts: Some Highlights, 84 Tul. L. Rev. 1519, 1519 (2010).

96. ALI Principles, supra note 54, at 2.

97. Id.

98. Id.

99. Robert A. Hillman & Maureen O’Rourke, Defending Disclosure in Software Licensing,
78 U. Chi. L. Rev. 95, 95 (2011); see also Florencia Marotta-Wurgler, Will Increased Disclosure
Help?: Evaluating the Recommendations of the ALI’s “Principles of the Law of Software Con-
tracts”, 78 U. Chi. L. Rev. 165, 167 (2011) (praising the Principles’s preference for disclosure
over regulation).

100. ALI Principles, supra note 54, at IX–X.

754 Michigan Law Review [Vol. 113:739

A. The Substantial Software Test and the ALI Principles Provide a
Straightforward Framework for Resolving Software Disputes

The substantial software test includes both a legal test and a body of law.
The legal test’s primary strength is its simplicity. Courts need not grapple
with whether goods or services predominate a software contract or whether
the transfer at issue is a license or a sale.101 Rather, courts must decide only
whether software is a substantial component of a given contract. The diffi-
culty inherent in deciding what qualifies as “substantial” is far less complex
than the difficulty involved in separating software contracts into those for
goods and those for services. And the substantial software test’s less de-
manding threshold—which asks if software is substantial rather than pre-
dominant—would allow the ALI Principles to govern as a quasidefault
regime. Contract parties could reasonably expect that the Principles would
apply in any future litigation, and the parties could plan accordingly.

Replacing the predominant purpose test with the substantial software
test would, without further changes, increase legal clarity and predictability.
The ALI Principles complement the substantial software test and fill a void
left by general contract law.102 They memorialize existing law103 but perceive
the market as too weak to ensure that consumers receive equitable licensing
terms.104 The Principles offer the benefits of specialized over general contract
law,105 and they deal with perennial software issues like contract formation,
standard form terms, and the remote disabling of licensed software.106

Adopting the Principles would also bring American jurisprudence in line
with that of the common law community. The United Kingdom,107 India,108

101. Hillman & O’Rourke, supra note 95, at 1522.

102. See Frier & White, supra note 85, at 206 (asserting that the “absence of any . . .
reliable source of comprehensive body of doctrine” will likely push courts to adopt the ALI
Principles as law).

103. Cf. Katharine T. Bartlett, U.S. Custody Law and Trends in the Context of the ALI
Principles of the Law of Family Dissolution, 10 Va. J. Soc. Pol’y & L. 5, 6 (2002) (“Unlike
traditional ALI Restatements, ALI Principles strive to find ‘best practices’ without necessarily
being constrained by existing law.”).

104. See Marotta-Wurgler, supra note 99, at 166.

105. See generally Robert A. Hillman, Contract Law in Context: The Case of Software Con-
tracts, 45 Wake Forest L. Rev. 669 (2010).

106. Juliet M. Moringiello & William L. Reynolds, What’s Software Got To Do with It? The
ALI Principles of the Law of Software Contracts, 84 Tul. L. Rev. 1541, 1549–52 (2010).

107. The United Kingdom’s Intellectual Property Office firmly classifies “computer
software” as a good, but it classifies the design, development, installation, and repair of
software as a service. Trade Mark Classification List of Goods and Services, Intell. Prop. Off.
(May 2, 2014), https://www.gov.uk/government/publications/how-to-classify-trade-marks/
trade-mark-classification-list-of-goods-and-services (class 9 and class 42).

108. The Madras High Court found that “software [is] undoubtedly goods, as it [is] an
article of value having regard to its utility, capability of being bought and sold, and capability
of transmission, delivery, storage and possession.” S. Madhavan, Is Supply of Software a Sale or
a Service?, Bus. Standard (Sept. 6, 2010), http://www.business-standard.com/article/econo
my-policy/is-supply-of-software-a-sale-or-a-service-110090600038_1.html.

March 2015] Installation Failure 755

and Australia109 have all taken concrete steps to remove the ambiguity in
software’s legal status.

Finally, to the extent that the ALI Principles “would be helpful to both
the parties and courts in determining outcomes,” adopting them would not
require a significant shift in jurisprudence.110 The Principles address topics
that neither the common law nor the UCC discusses,111 and they do not
completely overhaul the judicial landscape or render null decades of case
law.112 In short, they offer judges a sophisticated yet accessible guide for
resolving software cases.

Despite their suitability, the ALI Principles have thus far been a
nonfactor in the courts.113 In 2009, the Indiana Supreme Court cited the
Principles in dicta, merely noting their existence,114 but no court has used
the Principles as authority in any published judicial decision.115 The most
likely explanation for this is that courts, attorneys, and many academics are
simply unfamiliar with them. Working drafts of the Principles, unlike drafts
for revised Article 2 or UCITA, were not readily accessible online.116 This
“probably shielded the Principles from public scrutiny comparable to that
devoted to [revised] Article 2[] and UCITA.”117 CNN and the New York
Times gave UCITA “prominent coverage” during its development, while
only “specialty technology journals and Web sites” covered the adoption of
the ALI Principles.118 That they are relatively unfamiliar should not dissuade
courts from adopting them, however. The substantial software test and ALI

109. See, e.g., Competition and Consumer Act 2010 (Cth) sch 2 (Austl.), available at http://
www.comlaw.gov.au/Details/C2014C00486/Html/Volume_3#_Toc394409742 (defining
software as “goods”).

110. Maureen A. O’Rourke, The ALI’s Principles of Software Contracting: Some Comments
& Clarifications, 12 J. High Tech. L. 159, 166 (2011).

111. Id. at 166–67.

112. Nonetheless, the Principles have not been immune to criticism. One commentator
lauded the Principles as “an impressive accomplishment” but was dismayed that they excluded
digital content. Kim, supra note 20, at 1596–97. Two members of the ALI Principles Members
Consultative Group criticized the project for failing to differentiate between licenses and sales
and for its lack of guidance on when federal intellectual property law should preempt state
contract law. Moringiello & Reynolds, supra note 106, at 1541 n.†, 1543–47. Another com-
mentator determined that one of the Principles’s provisions, intended to increase consumer
contract readership, would yield only a single additional reader for every 278 shoppers. Mar-
otta-Wurgler, supra note 99, at 167–68, 183–84.

113. Florencia Marotta-Wurgler & Robert Taylor, Set in Stone? Change and Innovation in
Consumer Standard-Form Contracts, 88 N.Y.U. L. Rev. 240, 270 n.77 (2013) (observing that
“courts do not appear to have relied on [the ALI Principles] yet”).

114. Conwell v. Gray Loon Outdoor Mktg. Grp., Inc., 906 N.E.2d 805, 811 & n.7 (Ind.
2009).

115. See Principles of the Law of Software Contracts, General Case Citations (West,
Westlaw through June 2014).

116. Hannibal Travis, The Principles of the Law of Software Contracts: At Odds with Cop-
yright, Consumer, and European Law?, 84 Tul. L. Rev. 1557, 1565 (2010).

117. Id.

118. Id. at 1565 n.40.

756 Michigan Law Review [Vol. 113:739

Principles together can end the long-standing ambiguity surrounding
software’s legal status.

B. The Substantial Software Test Is Superior to Alternative Reform Efforts
and Overcomes Its Limitations

The substantial software test prevails not only over the predominant
purpose test but also over alternative efforts to correct software law. Aside
from implementing the substantial software test, courts could adopt a hard-
line rule. They could also replace the predominant purpose test with an
existing, more familiar test. Or they could simply defer to state legislatures
and continue to apply the predominant purpose test unless they receive a
statutory directive indicating otherwise. All three alternatives are ultimately
inadequate when compared with the substantial software test, however.

Courts should resist adopting a per-se rule that either categorically ap-
plies the UCC or completely excludes it from consideration. While such a
rule would be straightforward and would eliminate any confusion over
whether the UCC or common law applies, both variations contain flaws that
would render them unworkable in the software context.

Those favoring a narrower construction of Article 2 would bar the UCC
from ever applying to software.119 But courts that invariably apply common
law may do so even in instances where the software involved is insignifi-
cant.120 For example, the sale of refrigerators containing embedded com-
puter chips is clearly a transaction in goods and should be governed by the
UCC, but a per-se rule applying common law to all software-related transac-
tions would mandate a contrary result.

Other advocates of a per-se rule, by contrast, would apply the UCC in
all software disputes.121 But this approach would transform the Code into
“the successor of the evil from the past that [UCC drafter Karl Llewellyn]
sought to avoid.”122 The UCC was written to govern traditional “wares mov-
ing to and through a merchants’ market.”123 Llewellyn could not conceive of,
and the UCC cannot accommodate, the intricacies of software contracts.
The substantial software test is superior to a per-se rule that categorically
applies the UCC because it still requires that a contract be substantially com-
posed of software.

The substantial software test is also superior to extant legal tests like the
gravamen of the action test and the bifurcated transaction test. The gravamen
of the action test focuses on the nature of the lawsuit in determining

119. See Towle, supra note 23, at 532.

120. See supra Section II.C.

121. E.g., Braucher, supra note 25, at 278. Under this view, doing away with the UCC for
all software disputes would sacrifice a “flexible approach to contract formation” and adminis-
trable rules on everything from warranties to remedies for nonperformance. See id. at 276–77.

122. Raymond T. Nimmer, Images and Contract Law—What Law Applies to Transactions
in Information, 36 Hous. L. Rev. 1, 18–19 (1999).

123. See K.N. Llewellyn, The First Struggle to Unhorse Sales, 52 Harv. L. Rev. 873, 883
(1939) (discussing early factors motivating the desire to create a uniform body of sales law).

March 2015] Installation Failure 757

whether Article 2 should govern the contract dispute.124 Under the gravamen
test, there is no need to determine whether the entire contract focuses
predominantly on goods or services. Courts could apply the law “most rele-
vant” to the cause of action.125

The substantial software test remains a better option. Bright-line divi-
sions between goods and services lead to “insurmountable problems of
proof in segregating assets.”126 The predominant purpose test has failed in
large measure precisely because it requires courts to segregate assets. Moreo-
ver, the gravamen test, for its part, “has not won widespread acceptance in
the courts,”127 and some states have “explicitly rejected” it.128 By contrast, the
substantial software test avoids the goods–services debate altogether, and it
does not have the tarnished reputation of the gravamen test.

The Tenth Circuit in 1967 presented another option, the bifurcated
transaction test, but most courts have since rejected it.129 Unlike the grava-
men of the action and predominant purpose tests, which have an all-or-
nothing effect, the bifurcation test directs courts to apply the UCC to the
goods portion of a transaction and the common law to the services por-
tion.130 This test therefore enables courts to avoid deciding whether a con-
tract is primarily for goods or for services. And yet most courts have
“rejected this approach as unworkable,”131 because it entails applying

124. Nathalie Martin, Software Transactions and U.C.C. Article 2, Emerging Issues, Apr.
27, 2008, available at 2008 Emerging Issues 102 (LexisNexis).

125. Towle, supra note 23, at 555 n.70; see also In re Fort Totten Metrorail Cases Arising
Out of the Events of June 22, 2009, 793 F. Supp. 2d 133 (D.D.C. 2011). In 2009, two Washing-
ton Metropolitan Area Transit Authority (“WMATA”) subway trains collided, leaving nine
dead and dozens injured in the worst WMATA accident in D.C. history. The decedent passen-
gers’ estates sued WMATA and Alston Signing for, among other things, breach of UCC im-
plied warranties. See In re Fort Totten, 793 F. Supp. 2d at 137–38. The plaintiffs alleged that
one of the subway’s train-detection systems was defective. Id. The court concluded that Al-
ston’s sale to WMATA of “train traffic control equipment, software and support services”
made the company a merchant under the UCC. Id. at 151. That the court looked to the
specific transfer of software relating to the subway collision speaks to the gravamen test’s
potential. See id.

126. Hudson v. Town & Country True Value Hardware, Inc., 666 S.W.2d 51, 54 (Tenn.
1984).

127. 1 Hawkland’s Uniform Commercial Code Series, supra note 36, § 2-102:2.

128. Martin, supra note 124 (citing appellate courts in Illinois and Indiana); cf. George E.
Henderson, A New Chapter 2 for Texas: Well-Suited or Ill-Fitting, 41 Tex. Tech L. Rev. 235,
280–81 (2009) (suggesting that Texas courts are unlikely to use any “goods-services test” to
determine whether the UCC applies to software disputes).

129. Martin, supra note 124 (citing Foster v. Colo. Radio Corp., 381 F.2d 222 (10th Cir.
1967)).

130. Id.

131. Id. (citing Rajala v. Allied Corp., 66 B.R. 582 (D. Kan. 1986)); see also Consol. Edison
Co. of N.Y. v. Westinghouse Elec. Corp., 567 F. Supp. 358, 362 (S.D.N.Y. 1983) (“The New
York courts appear to have rejected an approach of applying sales law to the sales aspect of a
transaction which combines both sales and service features, requiring instead that the applica-
ble law be determined by looking to the essential nature of the underlying contract.”).

758 Michigan Law Review [Vol. 113:739

“different laws to the same contract.”132 Insisting that courts apply the Stat-
ute of Frauds only to the goods portion of a contract would make perform-
ance impossible “within the intention of the parties.”133 The bifurcation test
also fails to address how courts should treat the software aspect of a mixed
contract. The substantial software test, by contrast, involves one body of law
that is tailored for software contracts.

The gravamen and bifurcation tests are valuable insofar as they achieve
better results in limited circumstances. Courts can effectively apply the gra-
vamen test when a lawsuit’s primary focus is clearly goods or services and
the bifurcation test when a contract is divisible into goods and services por-
tions. These scenarios are exceedingly rare, however, and courts would still
be left to apply ill-fitting UCC provisions or common law. Courts will earn
greater long-term dividends by utilizing the substantial software test and the
ALI Principles.

Finally, the substantial software test is also preferable to legislative initia-
tives like UCITA. Courts may be tempted to defer to state legislatures for
guidance on software law, but UCITA’s demise illustrates how unlikely it is
that reform will come from the statehouse. Legislative initiatives allow public
opinion and special interest groups to band together in opposition. Neither
the ALI Principles nor the substantial software test requires legislative ap-
proval, except in Maryland and Virginia, where UCITA governs. Moreover,
because the ALI Principles would remain constant, the substantial software
test is also more likely than separate state statutes to produce a unified body
of case law.

Of course, the substantial software test’s relative superiority does not
mean it is flawless. Determining whether software is substantial in a contract
is subject to judicial discretion and balancing. In making this determination,
then, courts may misuse or misapply the ALI Principles, thereby creating
another incoherent body of doctrine. And for all its problems in the
software setting, the predominant purpose test has worked well in other ar-
eas of contract law and could possibly be tweaked to accommodate
software’s uniqueness.

None of these concerns should ultimately carry the day. Determining
whether software is a substantial component of a contract is less complex
than segregating contracts into those for goods and those for services. A
court needs less technological expertise to decide whether customizable bill-
ing software is substantial in a contract than to decide whether that software
is predominantly a good or a service. In this sense, the substantial software
test asks a more basic and accessible question.

Concerns that courts will misinterpret the ALI Principles are under-
standable but remain unpersuasive. If necessary, the ALI can always modify
the Principles, placing more emphasis on one topic and less on another. In
the worst-case scenario, if the Principles are found unworkable, courts will

132. Martin, supra note 124.

133. De Filippo v. Ford Motor Co., 516 F.2d 1313, 1323 (3d Cir. 1975).

March 2015] Installation Failure 759

stop applying them, and the Principles will become a short-lived and unsuc-
cessful experiment. Should they fulfill their stated mission, though, the Prin-
ciples will define the contours of an entire body of doctrine and
immeasurably improve legal clarity.

Lastly, courts and practitioners may be wary of entirely abandoning the
predominant purpose test and instead search for a less wholesale change
than the substantial software test. But such a search would rest on a mis-
taken premise. The substantial software test is not a revolutionary overhaul
of substantive law. It simply arranges the fragmented pieces of software ju-
risprudence and adds a modern touch to interpretation. This reality should
assuage concerns that adopting the test would constitute a drastic change.

Conclusion

While the predominant purpose test has needlessly perpetuated
software’s uncertain legal status, the substantial software test can correct de-
cades of judicial confusion over what law should apply in software disputes.
Courts that adopt this test would no longer be forced to wrestle with deter-
mining the primary purpose of a contract, and they would benefit from the
substantive provisions of the ALI Principles of the Law of Software Contracts.
This Note has argued that courts should no longer hesitate to apply the ALI
Principles as authority in software disputes. Instead, they should embrace
the substantial software test and the ALI Principles as an important and long
overdue step in clarifying software jurisprudence.

760 Michigan Law Review [Vol. 113:739

	Installation Failure: How the Predominant Purpose Test Has Perpetuated Software’s Uncertain Legal Status Under the Uniform Commercial Code
	Recommended Citation

	36024-mic_113-5

